
Data Structures
Haskell Performance

Andres Löh

14–15 May 2018 — Copyright © 2018 Well-Typed LLP

Well-Typed
The Haskell Consultants

Kinds

What is Maybe ?

The type signature of undefined is

undefined :: a

indicating that undefined can have any type.

Yet writing

undefined :: Maybe

yields an error. Why?

Because Maybe always expects a type parameter?

Well-Typed

What is Maybe ?

The type signature of undefined is

undefined :: a

indicating that undefined can have any type.

Yet writing

undefined :: Maybe

yields an error. Why?

Because Maybe always expects a type parameter?

Well-Typed

What is Maybe ?

The type signature of undefined is

undefined :: a

indicating that undefined can have any type.

Yet writing

undefined :: Maybe

yields an error. Why?

Because Maybe always expects a type parameter?

Well-Typed

An interesting datatype

data WrappedInt f = Wrap (f Int)

example1 :: WrappedInt Maybe
example1 = Wrap (Just 3)

example2 :: WrappedInt []
example2 = Wrap [1, 2, 3]

example3 :: WrappedInt IO
example3 = Wrap readLn

Here, Maybe can occur without a type parameter.

What happens if we type the following:

Wrap (Just 3) :: WrappedInt (Maybe Int)

Well-Typed

An interesting datatype

data WrappedInt f = Wrap (f Int)

example1 :: WrappedInt Maybe
example1 = Wrap (Just 3)

example2 :: WrappedInt []
example2 = Wrap [1, 2, 3]

example3 :: WrappedInt IO
example3 = Wrap readLn

Here, Maybe can occur without a type parameter.

What happens if we type the following:

Wrap (Just 3) :: WrappedInt (Maybe Int)

Well-Typed

A kind error

GHCi> Wrap (Just 3) :: WrappedInt (Maybe Int)
Expecting one fewer argument to ‘Maybe Int ’
Expected kind ‘* -> * ’, but ‘Maybe Int ’ has kind *

Well-Typed

Kinds are the types of types

Types classify Haskell expressions (and, in a way, also patterns and
declarations). Only well-typed expressions are admissible.

Kinds classify Haskell types. Only well-kinded types are admissible.

Well-Typed

Kinds are the types of types

Types classify Haskell expressions (and, in a way, also patterns and
declarations). Only well-typed expressions are admissible.

Kinds classify Haskell types. Only well-kinded types are admissible.

Well-Typed

The kind *

The most important kind in Haskell is called * :

▶ nearly all expressions in Haskell have types that have kind * ;
▶ in particular, if you define an unparameterized datatype using

data , it has kind * ;
▶ for now, think of kind * as the kind of potentially inhabited

types, or as the kind of “fully applied” types.

Well-Typed

Examples of types of kind *

Int
Char
Bool

Maybe Int
Int -> Int
[[[Char]]]
(Bool, Char -> [Ordering -> IO ()])
WrappedInt Maybe
a -> b -> a

Well-Typed

Examples of types of kind *

Int
Char
Bool

Maybe Int
Int -> Int
[[[Char]]]
(Bool, Char -> [Ordering -> IO ()])
WrappedInt Maybe
a -> b -> a

Well-Typed

Function kinds

You can see Maybe as a function on the type level: it expects an
argument which is a type, and returns a new type.

But can we apply anything to Maybe ? What about the following
“type”?

Maybe IO

We actually want that the argument to Maybe is a potentially
inhabited type, i.e., a type of kind * . We then obtain a new type of
kind * .

This motivates:

Maybe :: * -> *

Well-Typed

Function kinds

You can see Maybe as a function on the type level: it expects an
argument which is a type, and returns a new type.

But can we apply anything to Maybe ? What about the following
“type”?

Maybe IO

We actually want that the argument to Maybe is a potentially
inhabited type, i.e., a type of kind * . We then obtain a new type of
kind * .

This motivates:

Maybe :: * -> *

Well-Typed

Function kinds

You can see Maybe as a function on the type level: it expects an
argument which is a type, and returns a new type.

But can we apply anything to Maybe ? What about the following
“type”?

Maybe IO

We actually want that the argument to Maybe is a potentially
inhabited type, i.e., a type of kind * . We then obtain a new type of
kind * .

This motivates:

Maybe :: * -> *

Well-Typed

Kinds in GHCi

▶ Haskell can infer kinds, just as it can infer types.
▶ And you can ask GHCi for the inferred kind of a type.
▶ To obtain the inferred kind for a type term, type :k or :kind

followed by the term at the GHCi prompt.

Well-Typed

Kinds of parameterized types

Maybe :: * -> *
IO :: * -> *
[] :: * -> *
(,) :: * -> * -> *
(,,) :: * -> * -> * -> *
(->) :: * -> * -> *
State :: * -> * -> *

Well-Typed

Kinds of parameterized types (contd.)

Note that lists, tuples and functions despite their built-in syntax
actually all support a prefix notation on the type level. Writing

(->) Int ([] Bool)

is equivalent to

Int -> [Bool]

Well-Typed

Kind errors

We can now determine why

undefined :: Maybe
undefined :: Maybe IO

are wrong.

A type signature attached to a term is expected to be of kind * , but
Maybe without an argument is of kind * -> * .

A Maybe expects an argument of kind * , but IO is of kind * -> *
.

Well-Typed

Kind errors

We can now determine why

undefined :: Maybe
undefined :: Maybe IO

are wrong.

A type signature attached to a term is expected to be of kind * , but
Maybe without an argument is of kind * -> * .

A Maybe expects an argument of kind * , but IO is of kind * -> *
.

Well-Typed

Kind errors

We can now determine why

undefined :: Maybe
undefined :: Maybe IO

are wrong.

A type signature attached to a term is expected to be of kind * , but
Maybe without an argument is of kind * -> * .

A Maybe expects an argument of kind * , but IO is of kind * -> *
.

Well-Typed

Back to WrappedInt

Question: What is the kind of WrappedInt ?

data WrappedInt f = Wrap (f Int)

WrappedInt :: (* -> *) -> *

Thus:

WrappedInt Maybe -- kind correct
WrappedInt (Maybe Int) -- kind error

Well-Typed

Back to WrappedInt

Question: What is the kind of WrappedInt ?

data WrappedInt f = Wrap (f Int)

WrappedInt :: (* -> *) -> *

Thus:

WrappedInt Maybe -- kind correct
WrappedInt (Maybe Int) -- kind error

Well-Typed

Back to WrappedInt

Question: What is the kind of WrappedInt ?

data WrappedInt f = Wrap (f Int)

WrappedInt :: (* -> *) -> *

Thus:

WrappedInt Maybe -- kind correct
WrappedInt (Maybe Int) -- kind error

Well-Typed

Kind signatures

▶ The kind system is a part of the Haskell Standard, but as defined,
kinds are completely hidden from the surface and do not occur
explicitly in the language.

▶ However, you can enable explicit kind signatures via the
KindSignatures language extension.

Example:

data WrappedInt (f :: * -> *) = Wrap (f Int :: *)

Kind annotations are possible for arguments and type terms, but
there’s no separate “kind signature” declaration as there is for
functions and constants.

Well-Typed

Kind signatures

▶ The kind system is a part of the Haskell Standard, but as defined,
kinds are completely hidden from the surface and do not occur
explicitly in the language.

▶ However, you can enable explicit kind signatures via the
KindSignatures language extension.

Example:

data WrappedInt (f :: * -> *) = Wrap (f Int :: *)

Kind annotations are possible for arguments and type terms, but
there’s no separate “kind signature” declaration as there is for
functions and constants.

Well-Typed

Kinds and classes

Type classes are parameterized by types of a particular kind:

class Eq a where
(==) :: a -> a -> Bool -- a of kind *
...

class Functor f where
fmap :: (a -> b) -> f a -> f b -- f of kind * -> *

Again, with KindSignatures, you could write more explicitly:

class Functor (f :: * -> *) where
fmap :: (a -> b) -> f a -> f b

Well-Typed

Kinds and classes

Type classes are parameterized by types of a particular kind:

class Eq a where
(==) :: a -> a -> Bool -- a of kind *
...

class Functor f where
fmap :: (a -> b) -> f a -> f b -- f of kind * -> *

Again, with KindSignatures, you could write more explicitly:

class Functor (f :: * -> *) where
fmap :: (a -> b) -> f a -> f b

Well-Typed

The kind Constraint

With the ConstraintKinds language extension, we are allowed to talk
about the kind Constraint of class constraints explicitly:

Eq :: * -> Constraint
Show :: * -> Constraint

Functor :: (* -> *) -> Constraint
Applicative :: (* -> *) -> Constraint
Monad :: (* -> *) -> Constraint

Well-Typed

Partial parameterization of types

Just like functions are typically curried in Haskell, types are too.

Types can be – and often are – partially parameterized:

instance Monad (Either e) where
...

Either :: * -> * -> *
Either e :: * -> * -- correct kind for Monad class

Well-Typed

Partial parameterization of types

Just like functions are typically curried in Haskell, types are too.

Types can be – and often are – partially parameterized:

instance Monad (Either e) where
...

Either :: * -> * -> *
Either e :: * -> * -- correct kind for Monad class

Well-Typed

More examples

instance Functor ((,) t) where

Well-Typed

More examples

instance Functor ((,) t) where

The specialized type of fmap must be:

fmap :: (a -> b) -> ((,) t) a -> ((,) t) b

or syntactically simplified

fmap :: (a -> b) -> (t, a) -> (t, b)

Well-Typed

More examples

instance Functor ((,) t) where
fmap f (x, y) = (x, f y)

Well-Typed

More examples

instance Functor ((,) t) where
fmap f (x, y) = (x, f y)

And what about this one?
fmap' :: (a -> b) -> (a, t) -> (b, t)
fmap' f (x, y) = (f x, y)

Well-Typed

No “type-level lambda”

While we can define

fmap' :: (a -> b) -> (a, t) -> (b, t)
fmap' f (x, y) = (f x, y)

we cannot make this function be a normal fmap on pairs.

▶ In general, there is no easy way to partially apply types to
anything but the initial argument(s).

▶ Unlike for functions, there is no type-level flip function.
▶ The order of arguments of multi-argument datatypes is

sometimes carefully chosen in order to admit certain class
instances.

Well-Typed

No “type-level lambda”

While we can define

fmap' :: (a -> b) -> (a, t) -> (b, t)
fmap' f (x, y) = (f x, y)

we cannot make this function be a normal fmap on pairs.

▶ In general, there is no easy way to partially apply types to
anything but the initial argument(s).

▶ Unlike for functions, there is no type-level flip function.
▶ The order of arguments of multi-argument datatypes is

sometimes carefully chosen in order to admit certain class
instances.

Well-Typed

Type synonyms do not help

Question: Why does

type Flip f a b = f b a

class Functor (Flip (,) t) where
fmap = fmap'

not work?

Because type synonyms have to be fully applied.

Note

▶ how allowing this would make the job of resolving class
constraints much harder than it already is;

▶ that Flip itself is a legal type synonym. What is its kind?

Well-Typed

Type synonyms do not help

Question: Why does

type Flip f a b = f b a

class Functor (Flip (,) t) where
fmap = fmap'

not work?

Because type synonyms have to be fully applied.

Note

▶ how allowing this would make the job of resolving class
constraints much harder than it already is;

▶ that Flip itself is a legal type synonym. What is its kind?

Well-Typed

Type synonyms do not help

Question: Why does

type Flip f a b = f b a

class Functor (Flip (,) t) where
fmap = fmap'

not work?

Because type synonyms have to be fully applied.

Note

▶ how allowing this would make the job of resolving class
constraints much harder than it already is;

▶ that Flip itself is a legal type synonym. What is its kind?

Well-Typed

Persistent data structures

Imperative vs. functional style

Given a finite map (associative map, dictionary) foo .

Imperative style

foo.put (42, "Bar"); ...

Functional style

let foo' = insert 42 "Bar" foo in...

What is the difference?

Imperative: destructive update

Functional: creation of a new value

Well-Typed

Imperative vs. functional style

Given a finite map (associative map, dictionary) foo .

Imperative style

foo.put (42, "Bar"); ...

Functional style

let foo' = insert 42 "Bar" foo in...

What is the difference?

Imperative: destructive update

Functional: creation of a new value

Well-Typed

Persistent data structures

Imperative languages:

▶ many operations make use of destructive updates
▶ after an update, the old version of the data structure is no longer

available

Functional languages:

▶ most operations create a new data structure
▶ old versions are still available

Data structures where old version remain accessible are called
persistent.

Well-Typed

Persistent data structures

Imperative languages:

▶ many operations make use of destructive updates
▶ after an update, the old version of the data structure is no longer

available

Functional languages:

▶ most operations create a new data structure
▶ old versions are still available

Data structures where old version remain accessible are called
persistent.

Well-Typed

Persistent data structures

Imperative languages:

▶ many operations make use of destructive updates
▶ after an update, the old version of the data structure is no longer

available

Functional languages:

▶ most operations create a new data structure
▶ old versions are still available

Data structures where old version remain accessible are called
persistent.

Well-Typed

Persistent data structures (contd.)

▶ In functional languages, most data structures are (automatically)
persistent.

▶ In imperative languages, most data structures are not persistent
(ephemeral).

▶ It is generally possible to also use ephemeral data structures in
functional or persistent data structures in imperative languages.

How do persistent data structures work?

Well-Typed

Persistent data structures (contd.)

▶ In functional languages, most data structures are (automatically)
persistent.

▶ In imperative languages, most data structures are not persistent
(ephemeral).

▶ It is generally possible to also use ephemeral data structures in
functional or persistent data structures in imperative languages.

How do persistent data structures work?

Well-Typed

Example: Haskell lists

[1, 2, 3, 4]

is syntactic sugar for 1 : (2 : (3 : (4 : [])))

Representation in memory:

:

1 :

2 :

3 :

4 []

Well-Typed

Example: Haskell lists

[1, 2, 3, 4] is syntactic sugar for 1 : (2 : (3 : (4 : [])))

Representation in memory:

:

1 :

2 :

3 :

4 []

Well-Typed

Example: Haskell lists

[1, 2, 3, 4] is syntactic sugar for 1 : (2 : (3 : (4 : [])))

Representation in memory:

:

1 :

2 :

3 :

4 []

Well-Typed

Lists are persistent

let x = [1, 2, 3, 4]; y = 0 : x; z = drop 3 y in...

x

:

1 :

2 :

3 :

4 []

y

:

0

z

Well-Typed

Lists are persistent

let x = [1, 2, 3, 4]; y = 0 : x; z = drop 3 y in...

x

:

1 :

2 :

3 :

4 []

y

:

0

z

Well-Typed

Lists are persistent

let x = [1, 2, 3, 4]; y = 0 : x; z = drop 3 y in...

x

:

1 :

2 :

3 :

4 []

y

:

0

z

Well-Typed

Lists are persistent (contd.)

let x = [1, 2, 3, 4]; w = take 2 x in...

x

:

1 :

2 :

3 :

4 []

w

:

:

New nodes are allocated where
needed; nodes are shared
where possible.

Well-Typed

Lists are persistent (contd.)

let x = [1, 2, 3, 4]; w = take 2 x in...

x

:

1 :

2 :

3 :

4 []

w

:

:

New nodes are allocated where
needed; nodes are shared
where possible.

Well-Typed

Lists are persistent (contd.)

let x = [1, 2, 3, 4]; w = take 2 x in...

x

:

1 :

2 :

3 :

4 []

w

:

:

New nodes are allocated where
needed; nodes are shared
where possible.

Well-Typed

Implementation of persistent data structures

▶ Modifications of an existing structure take place by creating new
nodes and pointers.

▶ Sometimes, parts of a structure have to be copied, because the
old version must not be modified.

Of course, we want to copy as little as possible, and reuse as much as
possible.

Well-Typed

Summary: representation of data on the heap

Values are represented using one or more words of memory:

▶ the first word is a tag that identifies the constructor;
▶ the other words are the payload, typically pointers to the

arguments of the constructor.

Unevaluated data is represented using thunks:

▶ like a function, a thunk contains a code pointer that can be called
to evaluate and update the thunk in-place.

Well-Typed

Summary: representation of data on the heap

Values are represented using one or more words of memory:

▶ the first word is a tag that identifies the constructor;
▶ the other words are the payload, typically pointers to the

arguments of the constructor.

Unevaluated data is represented using thunks:

▶ like a function, a thunk contains a code pointer that can be called
to evaluate and update the thunk in-place.

Well-Typed

Visualization tools

Visualizing the representation of data on the heap

vacuum

A library for inspecting the internal graph representation of Haskell
terms, displaying sharing, but evaluating the inspected expression fully.

Several graphical frontends, but not all of them well-maintained and
easy to install.

ghc-vis / ghc-heap-view

A library and graphical frontend similar to vacuum, but allows us to see
unevaluated computations (thunk) and evaluate them interactively.
Integration with GHCi.

Well-Typed

ghc-vis example

:vis

Add terms to view; switch to graph view:

GHCi> let x = [1, 2, 3, 4]; w = take 2 x
GHCi> :view x
GHCi> :view y
GHCi> :switch

Evaluate y and update:

GHCi> y
[1, 2]
GHCi> :update

Well-Typed

ghc-vis example (contd.)

: :

S# 1:

S# 2:

S# 3:

S# 4 []

:

wx

Well-Typed

Trees

Trees

Tree-shaped structures are generally very suitable for a persistent,
functional setting:

▶ recursive structure of trees fits nicely with the natural way of
writing recursive functions in Haskell;

▶ reuse / sharing of subtrees is easy to achieve, i.e., most
operations on nodes just affect one path from the root to the
node, and can reuse all other parts of the data structure.

Most functional data structures are some sort of trees.

Lists are trees, too – just a very peculiar variant.

Well-Typed

Trees

Tree-shaped structures are generally very suitable for a persistent,
functional setting:

▶ recursive structure of trees fits nicely with the natural way of
writing recursive functions in Haskell;

▶ reuse / sharing of subtrees is easy to achieve, i.e., most
operations on nodes just affect one path from the root to the
node, and can reuse all other parts of the data structure.

Most functional data structures are some sort of trees.

Lists are trees, too – just a very peculiar variant.

Well-Typed

Trees

Tree-shaped structures are generally very suitable for a persistent,
functional setting:

▶ recursive structure of trees fits nicely with the natural way of
writing recursive functions in Haskell;

▶ reuse / sharing of subtrees is easy to achieve, i.e., most
operations on nodes just affect one path from the root to the
node, and can reuse all other parts of the data structure.

Most functional data structures are some sort of trees.

Lists are trees, too – just a very peculiar variant.

Well-Typed

Lists

▶ There is a lot of syntactic sugar for lists in Haskell. Thus, lists are
used for a lot of different purposes.

▶ Lists are the default data structure in functional languages much
as arrays are in imperative languages.

▶ However, lists support only very few operations efficiently.

Well-Typed

Operations on lists

[] :: [a] --

O(1)

(:) :: a -> [a] -> [a] --

O(1)

head :: [a] -> a --

O(1)

tail :: [a] -> [a] --

O(1)

snoc :: [a] -> a -> [a] --

O(n)

snoc = \ xs x -> xs ++ [x]

(!!) :: [a] -> Int -> a --

O(n)

(++) :: [a] -> [a] -> [a] --

O(m) (first list)

reverse :: [a] -> [a] --

O(n)

splitAt :: Int -> [a] -> ([a], [a]) --

O(n)

union :: Eq a => [a] -> [a] -> [a] --

O(mn)

elem :: Eq a => a -> [a] -> Bool --

O(n)

Well-Typed

Operations on lists

[] :: [a] -- O(1)

(:) :: a -> [a] -> [a] --

O(1)

head :: [a] -> a --

O(1)

tail :: [a] -> [a] --

O(1)

snoc :: [a] -> a -> [a] --

O(n)

snoc = \ xs x -> xs ++ [x]

(!!) :: [a] -> Int -> a --

O(n)

(++) :: [a] -> [a] -> [a] --

O(m) (first list)

reverse :: [a] -> [a] --

O(n)

splitAt :: Int -> [a] -> ([a], [a]) --

O(n)

union :: Eq a => [a] -> [a] -> [a] --

O(mn)

elem :: Eq a => a -> [a] -> Bool --

O(n)

Well-Typed

Operations on lists

[] :: [a] -- O(1)

(:) :: a -> [a] -> [a] -- O(1)

head :: [a] -> a --

O(1)

tail :: [a] -> [a] --

O(1)

snoc :: [a] -> a -> [a] --

O(n)

snoc = \ xs x -> xs ++ [x]

(!!) :: [a] -> Int -> a --

O(n)

(++) :: [a] -> [a] -> [a] --

O(m) (first list)

reverse :: [a] -> [a] --

O(n)

splitAt :: Int -> [a] -> ([a], [a]) --

O(n)

union :: Eq a => [a] -> [a] -> [a] --

O(mn)

elem :: Eq a => a -> [a] -> Bool --

O(n)

Well-Typed

Operations on lists

[] :: [a] -- O(1)

(:) :: a -> [a] -> [a] -- O(1)

head :: [a] -> a -- O(1)

tail :: [a] -> [a] --

O(1)

snoc :: [a] -> a -> [a] --

O(n)

snoc = \ xs x -> xs ++ [x]

(!!) :: [a] -> Int -> a --

O(n)

(++) :: [a] -> [a] -> [a] --

O(m) (first list)

reverse :: [a] -> [a] --

O(n)

splitAt :: Int -> [a] -> ([a], [a]) --

O(n)

union :: Eq a => [a] -> [a] -> [a] --

O(mn)

elem :: Eq a => a -> [a] -> Bool --

O(n)

Well-Typed

Operations on lists

[] :: [a] -- O(1)

(:) :: a -> [a] -> [a] -- O(1)

head :: [a] -> a -- O(1)

tail :: [a] -> [a] -- O(1)

snoc :: [a] -> a -> [a] --

O(n)

snoc = \ xs x -> xs ++ [x]

(!!) :: [a] -> Int -> a --

O(n)

(++) :: [a] -> [a] -> [a] --

O(m) (first list)

reverse :: [a] -> [a] --

O(n)

splitAt :: Int -> [a] -> ([a], [a]) --

O(n)

union :: Eq a => [a] -> [a] -> [a] --

O(mn)

elem :: Eq a => a -> [a] -> Bool --

O(n)

Well-Typed

Operations on lists

[] :: [a] -- O(1)

(:) :: a -> [a] -> [a] -- O(1)

head :: [a] -> a -- O(1)

tail :: [a] -> [a] -- O(1)

snoc :: [a] -> a -> [a] -- O(n)
snoc = \ xs x -> xs ++ [x]

(!!) :: [a] -> Int -> a --

O(n)

(++) :: [a] -> [a] -> [a] --

O(m) (first list)

reverse :: [a] -> [a] --

O(n)

splitAt :: Int -> [a] -> ([a], [a]) --

O(n)

union :: Eq a => [a] -> [a] -> [a] --

O(mn)

elem :: Eq a => a -> [a] -> Bool --

O(n)

Well-Typed

Operations on lists

[] :: [a] -- O(1)

(:) :: a -> [a] -> [a] -- O(1)

head :: [a] -> a -- O(1)

tail :: [a] -> [a] -- O(1)

snoc :: [a] -> a -> [a] -- O(n)
snoc = \ xs x -> xs ++ [x]

(!!) :: [a] -> Int -> a -- O(n)

(++) :: [a] -> [a] -> [a] --

O(m) (first list)

reverse :: [a] -> [a] --

O(n)

splitAt :: Int -> [a] -> ([a], [a]) --

O(n)

union :: Eq a => [a] -> [a] -> [a] --

O(mn)

elem :: Eq a => a -> [a] -> Bool --

O(n)

Well-Typed

Operations on lists

[] :: [a] -- O(1)

(:) :: a -> [a] -> [a] -- O(1)

head :: [a] -> a -- O(1)

tail :: [a] -> [a] -- O(1)

snoc :: [a] -> a -> [a] -- O(n)
snoc = \ xs x -> xs ++ [x]

(!!) :: [a] -> Int -> a -- O(n)

(++) :: [a] -> [a] -> [a] -- O(m) (first list)

reverse :: [a] -> [a] --

O(n)

splitAt :: Int -> [a] -> ([a], [a]) --

O(n)

union :: Eq a => [a] -> [a] -> [a] --

O(mn)

elem :: Eq a => a -> [a] -> Bool --

O(n)

Well-Typed

Operations on lists

[] :: [a] -- O(1)

(:) :: a -> [a] -> [a] -- O(1)

head :: [a] -> a -- O(1)

tail :: [a] -> [a] -- O(1)

snoc :: [a] -> a -> [a] -- O(n)
snoc = \ xs x -> xs ++ [x]

(!!) :: [a] -> Int -> a -- O(n)

(++) :: [a] -> [a] -> [a] -- O(m) (first list)

reverse :: [a] -> [a] -- O(n)

splitAt :: Int -> [a] -> ([a], [a]) --

O(n)

union :: Eq a => [a] -> [a] -> [a] --

O(mn)

elem :: Eq a => a -> [a] -> Bool --

O(n)

Well-Typed

Operations on lists

[] :: [a] -- O(1)

(:) :: a -> [a] -> [a] -- O(1)

head :: [a] -> a -- O(1)

tail :: [a] -> [a] -- O(1)

snoc :: [a] -> a -> [a] -- O(n)
snoc = \ xs x -> xs ++ [x]

(!!) :: [a] -> Int -> a -- O(n)

(++) :: [a] -> [a] -> [a] -- O(m) (first list)

reverse :: [a] -> [a] -- O(n)

splitAt :: Int -> [a] -> ([a], [a]) -- O(n)

union :: Eq a => [a] -> [a] -> [a] --

O(mn)

elem :: Eq a => a -> [a] -> Bool --

O(n)

Well-Typed

Operations on lists

[] :: [a] -- O(1)

(:) :: a -> [a] -> [a] -- O(1)

head :: [a] -> a -- O(1)

tail :: [a] -> [a] -- O(1)

snoc :: [a] -> a -> [a] -- O(n)
snoc = \ xs x -> xs ++ [x]

(!!) :: [a] -> Int -> a -- O(n)

(++) :: [a] -> [a] -> [a] -- O(m) (first list)

reverse :: [a] -> [a] -- O(n)

splitAt :: Int -> [a] -> ([a], [a]) -- O(n)

union :: Eq a => [a] -> [a] -> [a] -- O(mn)

elem :: Eq a => a -> [a] -> Bool --

O(n)

Well-Typed

Operations on lists

[] :: [a] -- O(1)

(:) :: a -> [a] -> [a] -- O(1)

head :: [a] -> a -- O(1)

tail :: [a] -> [a] -- O(1)

snoc :: [a] -> a -> [a] -- O(n)
snoc = \ xs x -> xs ++ [x]

(!!) :: [a] -> Int -> a -- O(n)

(++) :: [a] -> [a] -> [a] -- O(m) (first list)

reverse :: [a] -> [a] -- O(n)

splitAt :: Int -> [a] -> ([a], [a]) -- O(n)

union :: Eq a => [a] -> [a] -> [a] -- O(mn)

elem :: Eq a => a -> [a] -> Bool -- O(n)

Well-Typed

Guidelines for using lists

Lists are suitable for use if:

▶ most operations we need are stack operations,
▶ or the maximal size of the lists we deal with is relatively small,

A special case of stack-like access is if we traverse a large list linearly.

Lists are generally not suitable:

▶ for random access,
▶ for set operations such as union and intersection,
▶ to deal with (really) large amounts of text via String .

Well-Typed

Guidelines for using lists

Lists are suitable for use if:

▶ most operations we need are stack operations,
▶ or the maximal size of the lists we deal with is relatively small,

A special case of stack-like access is if we traverse a large list linearly.

Lists are generally not suitable:

▶ for random access,
▶ for set operations such as union and intersection,
▶ to deal with (really) large amounts of text via String .

Well-Typed

What is better than lists?

Are there functional data structures that support a more efficient
lookup operation than lists?

Yes, balanced search trees.

Can be used to implement finite maps and sets efficiently, and
persistently.

Well-Typed

What is better than lists?

Are there functional data structures that support a more efficient
lookup operation than lists?

Yes, balanced search trees.

Can be used to implement finite maps and sets efficiently, and
persistently.

Well-Typed

What is better than lists?

Are there functional data structures that support a more efficient
lookup operation than lists?

Yes, balanced search trees.

Can be used to implement finite maps and sets efficiently, and
persistently.

Well-Typed

Finite maps in the containers package

▶ A finite map is a function with a finite domain (type of keys).
▶ Useful for a wide variety of applications (tables, environments,

“arrays”).
▶ Implementation based on binary search trees.
▶ Available in Data.Map and Data.IntMap for Int as key type.
▶ Keys in the tree are ordered, so that efficient lookup is possible.
▶ Requires the keys to be in Ord .
▶ Inserting and removing elements can trigger rotations to

rebalance the tree.
▶ Everything happens in a persistent setting.

Well-Typed

Sets

Sets are a special case of finite maps: essentially,

type Set a = Map a ()

A specialized set implementation is available in Data.Set and
Data.IntSet , but the idea is the same as for finite maps.

Well-Typed

Finite map interface

This is an excerpt from the functions available in Data.Map :

data Map k a -- abstract

empty :: Map k a -- O(1)
insert :: (Ord k) => k -> a -> Map k a -> Map k a -- O(log n)
lookup :: (Ord k) => k -> Map k a -> Maybe a -- O(log n)
delete :: (Ord k) => k -> Map k a -> Map k a -- O(log n)
update :: (Ord k) => (a -> Maybe a) ->

k -> Map k a -> Map k a -- O(log n)
union :: (Ord k) => Map k a -> Map k a -> Map k a -- O(m + n)
member :: (Ord k) => k -> Map k a -> Bool -- O(log n)
size :: Map k a -> Int -- O(1)
map :: (a -> b) -> Map k a -> Map k b -- O(n)

The interface for Set is very similar.

Well-Typed

A glimpse at the implementation

data Map k a = Tip
| Bin {-# UNPACK #-} !Size

(Map k a) k a (Map k a)

type Size = Int

The ! is a strictness annotation for extra efficiency. More about that
later. Similarly the UNPACK pragma.

A map is

▶ either a leaf called Tip ,

▶ or a binary node called Bin containing
▶ the size of the tree,

▶ the key value pair,
▶ and a left and right subtree.

Well-Typed

A glimpse at the implementation

data Map k a = Tip
| Bin {-# UNPACK #-} !Size

(Map k a) k a (Map k a)

type Size = Int

The ! is a strictness annotation for extra efficiency. More about that
later. Similarly the UNPACK pragma.

A map is

▶ either a leaf called Tip ,

▶ or a binary node called Bin containing
▶ the size of the tree,

▶ the key value pair,
▶ and a left and right subtree.

Well-Typed

A glimpse at the implementation

data Map k a = Tip
| Bin {-# UNPACK #-} !Size

(Map k a) k a (Map k a)

type Size = Int

The ! is a strictness annotation for extra efficiency. More about that
later. Similarly the UNPACK pragma.

A map is

▶ either a leaf called Tip ,

▶ or a binary node called Bin containing
▶ the size of the tree,

▶ the key value pair,
▶ and a left and right subtree.

Well-Typed

A glimpse at the implementation

data Map k a = Tip
| Bin {-# UNPACK #-} !Size

(Map k a) k a (Map k a)

type Size = Int

The ! is a strictness annotation for extra efficiency. More about that
later. Similarly the UNPACK pragma.

A map is

▶ either a leaf called Tip ,

▶ or a binary node called Bin

containing
▶ the size of the tree,

▶ the key value pair,
▶ and a left and right subtree.

Well-Typed

A glimpse at the implementation

data Map k a = Tip
| Bin {-# UNPACK #-} !Size

(Map k a) k a (Map k a)

type Size = Int

The ! is a strictness annotation for extra efficiency. More about that
later. Similarly the UNPACK pragma.

A map is

▶ either a leaf called Tip ,

▶ or a binary node called Bin containing
▶ the size of the tree,

▶ the key value pair,
▶ and a left and right subtree.

Well-Typed

A glimpse at the implementation

data Map k a = Tip
| Bin {-# UNPACK #-} !Size

(Map k a) k a (Map k a)

type Size = Int

The ! is a strictness annotation for extra efficiency. More about that
later. Similarly the UNPACK pragma.

A map is

▶ either a leaf called Tip ,

▶ or a binary node called Bin containing
▶ the size of the tree,
▶ the key value pair,

▶ and a left and right subtree.

Well-Typed

A glimpse at the implementation

data Map k a = Tip
| Bin {-# UNPACK #-} !Size

(Map k a) k a (Map k a)

type Size = Int

The ! is a strictness annotation for extra efficiency. More about that
later. Similarly the UNPACK pragma.

A map is

▶ either a leaf called Tip ,

▶ or a binary node called Bin containing
▶ the size of the tree,
▶ the key value pair,
▶ and a left and right subtree.

Well-Typed

Smart constructors

The finite map library makes use of a common technique: smart
constructors are wrappers around constructors that help to ensure
that invariants of the data structure are maintained.

In this case, the Size argument of Bin should always reflect the
actual size of the tree:

bin :: Map k a -> k -> a -> Map k a -> Map k a
bin l kx x r = Bin (size l + size r + 1) l kx x r

size :: Map k a -> Int
size Tip = 0
size (Bin sz _ _ _ _) = sz

If only bin rather than Bin is used to construct binary nodes, the
size will always be correct.

Well-Typed

Smart constructors

The finite map library makes use of a common technique: smart
constructors are wrappers around constructors that help to ensure
that invariants of the data structure are maintained.

In this case, the Size argument of Bin should always reflect the
actual size of the tree:

bin :: Map k a -> k -> a -> Map k a -> Map k a
bin l kx x r = Bin (size l + size r + 1) l kx x r

size :: Map k a -> Int
size Tip = 0
size (Bin sz _ _ _ _) = sz

If only bin rather than Bin is used to construct binary nodes, the
size will always be correct.

Well-Typed

Smart constructors

The finite map library makes use of a common technique: smart
constructors are wrappers around constructors that help to ensure
that invariants of the data structure are maintained.

In this case, the Size argument of Bin should always reflect the
actual size of the tree:

bin :: Map k a -> k -> a -> Map k a -> Map k a
bin l kx x r = Bin (size l + size r + 1) l kx x r

size :: Map k a -> Int
size Tip = 0
size (Bin sz _ _ _ _) = sz

If only bin rather than Bin is used to construct binary nodes, the
size will always be correct.

Well-Typed

Smart constructors

The finite map library makes use of a common technique: smart
constructors are wrappers around constructors that help to ensure
that invariants of the data structure are maintained.

In this case, the Size argument of Bin should always reflect the
actual size of the tree:

bin :: Map k a -> k -> a -> Map k a -> Map k a
bin l kx x r = Bin (size l + size r + 1) l kx x r

size :: Map k a -> Int
size Tip = 0
size (Bin sz _ _ _ _) = sz

If only bin rather than Bin is used to construct binary nodes, the
size will always be correct.

Well-Typed

Inserting an element

insert :: Ord k => k -> a -> Map k a -> Map k a
insert kx x Tip = singleton kx x -- insert new
insert kx x (Bin sz l ky y r) =
case compare kx ky of
LT -> balance (insert kx x l) ky y r
GT -> balance l ky y (insert kx x r)
EQ -> Bin sz l kx x r -- replace old

The function balance is an even smarter constructor with the same
type as bin :

balance :: Map k a -> k -> a -> Map k a -> Map k a

Well-Typed

Inserting an element

insert :: Ord k => k -> a -> Map k a -> Map k a
insert kx x Tip = singleton kx x -- insert new
insert kx x (Bin sz l ky y r) =
case compare kx ky of
LT -> balance (insert kx x l) ky y r
GT -> balance l ky y (insert kx x r)
EQ -> Bin sz l kx x r -- replace old

The function balance is an even smarter constructor with the same
type as bin :

balance :: Map k a -> k -> a -> Map k a -> Map k a

Well-Typed

Balancing the tree

We could just define

balance = bin

and that would actually be correct.

But certain sequences of insert would yield degenerated trees and
make subsequent lookup calls quite costly.

Well-Typed

Balancing the tree

We could just define

balance = bin

and that would actually be correct.

But certain sequences of insert would yield degenerated trees and
make subsequent lookup calls quite costly.

Well-Typed

Balancing approach

▶ If the height of the two subtrees is not too different, we just use
bin .

▶ Otherwise, we perform a rotation.

Rotation

A rearrangement of the tree that preserves the search tree property.

Well-Typed

Balancing approach

▶ If the height of the two subtrees is not too different, we just use
bin .

▶ Otherwise, we perform a rotation.

Rotation

A rearrangement of the tree that preserves the search tree property.

Well-Typed

Rotation

rotateL :: Map k a -> k -> a -> Map k a -> Map k a
rotateL l kx x r@(Bin _ ly _ _ ry)

| size ly < ratio * size ry = singleL l kx x r
| otherwise = doubleL l kx x r

rotateL _ _ _ Tip = error "rotateL Tip"

Depending on the shape of the tree, either a simple (single) or a more
complex (double) rotation is performed.

Well-Typed

singleL

singleL :: Map k a -> k -> a -> Map k a -> Map k a
singleL t1 k1 x1 (Bin _ t2 k2 x2 t3) =
bin (bin t1 k1 x1 t2) k2 x2 t3

(k1, x1)

t1 (k2, x2)

t2 t3

(k2, x2)

(k1, x1)

t1 t2

t3

Well-Typed

doubleL

doubleL :: Map k a -> k -> a -> Map k a -> Map k a
doubleL t1 k1 x1 (Bin _ (Bin _ t2 k2 x2 t3) k3 x3 t4) =
bin (bin t1 k1 x1 t2) k2 x2 (bin t3 k3 x3 t4)

(k1, x1)

t1 (k3, x3)

(k2, x2)

t2 t3

t4

(k2, x2)

(k1, x1) (k3, x3)

t1 t2 t3 t4

Well-Typed

Rotation (contd.)

Note

Note how easy it is to see that these rotations preserve the search tree
property – also, no pointer manipulations.

Well-Typed

Sequences

Performance characteristics

Sometimes, we need a data structure with

▶ efficient random access to arbitrary elements;
▶ very efficient access to both ends;
▶ efficient concatenation and splitting.

Think of queues, pattern matching and extraction operations, search
and replace operations, etc.

This is offered by the Data.Sequence library, also from the
containers package.

Well-Typed

Performance characteristics

Sometimes, we need a data structure with

▶ efficient random access to arbitrary elements;
▶ very efficient access to both ends;
▶ efficient concatenation and splitting.

Think of queues, pattern matching and extraction operations, search
and replace operations, etc.

This is offered by the Data.Sequence library, also from the
containers package.

Well-Typed

Sequence interface

Again, this is just a small excerpt:

data Seq a -- abstract

empty :: Seq a -- O(1)
(<|) :: a -> Seq a -> Seq a -- O(1)
(|>) :: Seq a -> a -> Seq a -- O(1)
(><) :: Seq a -> Seq a -> Seq a -- O(log(min(m, n)))

null :: Seq a -> Bool -- O(1)
length :: Seq a -> Int -- O(1)

filter :: (a -> Bool) -> Seq a -> Seq a -- O(n)
fmap :: (a -> Bool) -> Seq a -> Seq b -- O(n)

index :: Seq a -> Int -> a -- O(log(min(i, n − i)))
splitAt :: Seq a -> Int -> (Seq a, Seq a) -- O(log(min(i, n − i)))

Well-Typed

Implementation of sequences

Sequences are implemented as a special form of trees called finger
trees:

newtype Seq a = Seq (FingerTree a)

data FingerTree a =
Empty

| Single a
| Deep {-# UNPACK #-} !Int

!(Digit a) (FingerTree (Node a)) !(Digit a)

data Node a = Node2 {-# UNPACK #-} !Int a a
| Node3 {-# UNPACK #-} !Int a a a

data Digit a =
One a | Two a a | Three a a a | Four a a a a

Well-Typed

Implementation of sequences

Sequences are implemented as a special form of trees called finger
trees:

newtype Seq a = Seq (FingerTree a)

data FingerTree a =
Empty

| Single a
| Deep {-# UNPACK #-} !Int

!(Digit a) (FingerTree (Node a)) !(Digit a)

data Node a = Node2 {-# UNPACK #-} !Int a a
| Node3 {-# UNPACK #-} !Int a a a

data Digit a =
One a | Two a a | Three a a a | Four a a a a

Stores the size directly like Map .

Well-Typed

Implementation of sequences

Sequences are implemented as a special form of trees called finger
trees:

newtype Seq a = Seq (FingerTree a)

data FingerTree a =
Empty

| Single a
| Deep {-# UNPACK #-} !Int

!(Digit a) (FingerTree (Node a)) !(Digit a)

data Node a = Node2 {-# UNPACK #-} !Int a a
| Node3 {-# UNPACK #-} !Int a a a

data Digit a =
One a | Two a a | Three a a a | Four a a a a

Calls itself recursively, but at a different type!

Well-Typed

Implementation of sequences

Sequences are implemented as a special form of trees called finger
trees:

newtype Seq a = Seq (FingerTree a)

data FingerTree a =
Empty

| Single a
| Deep {-# UNPACK #-} !Int

!(Digit a) (FingerTree (Node a)) !(Digit a)

data Node a = Node2 {-# UNPACK #-} !Int a a
| Node3 {-# UNPACK #-} !Int a a a

data Digit a =
One a | Two a a | Three a a a | Four a a a a

These are the first and the last few elements. They’re directly
accessible.

Well-Typed

Implementation of sequences

Sequences are implemented as a special form of trees called finger
trees:

newtype Seq a = Seq (FingerTree a)

data FingerTree a =
Empty

| Single a
| Deep {-# UNPACK #-} !Int

!(Digit a) (FingerTree (Node a)) !(Digit a)

data Node a = Node2 {-# UNPACK #-} !Int a a
| Node3 {-# UNPACK #-} !Int a a a

data Digit a =
One a | Two a a | Three a a a | Four a a a a

This is an example of a so-called nested datatype.

Well-Typed

Arrays

Arrays

Sometimes, we want fast (constant time) access to data and compact
storage.

Note that sequences get close (operations at a low logarithmic cost),
but when speed and space are really an issue, arrays may be better:

▶ there are simple arrays provided as part of the array package;
▶ the still relatively recent vector package is quickly becoming a

new favourite, and that’s what we’ll discuss here.

Well-Typed

Persistent arrays and updates

The expression

let x = fromList [1, 2, 3, 4, 5] in x // [(2, 13)]

evaluates to the same array as fromList [1, 2, 13, 4, 5] .

Question: How expensive is the update operation?

Well-Typed

Array updates

x 1 2 3 4 5

x // [(2, 13)]

1 2 13 4 5

▶ Arrays are stored in a contiguous block of memory.
▶ This allows O(1) access to each element.
▶ In an imperative setting, a destructive update is also possible in
O(1).

▶ But if a persistent update is desired, the whole array must be
copied, which takes O(n), i.e., linear time.

Well-Typed

Array updates

x 1 2 3 4 5

x // [(2, 13)] 1 2 13 4 5

▶ Arrays are stored in a contiguous block of memory.
▶ This allows O(1) access to each element.
▶ In an imperative setting, a destructive update is also possible in
O(1).

▶ But if a persistent update is desired, the whole array must be
copied, which takes O(n), i.e., linear time.

Well-Typed

Advice on persistent arrays

Be careful when using them:

▶ stay away if you require a large number of small incremental
updates – finite maps or sequences are usually much better then;

▶ arrays can be useful if you have an essentially constant table that
you need to access frequently;

▶ arrays can also be useful if you perform global updates on them
anyway.

Well-Typed

Vector interface

This is an excerpt of Data.Vector :

data Vector a -- abstract

empty :: Vector a -- O(1)
generate :: Int -> (Int -> a) -> Vector a -- O(n)
fromList :: [a] -> Vector a -- O(n)

(++) :: Vector a -> Vector a -> Vector a -- O(m + n)

(!) :: Vector a -> Int -> a -- O(1)
(!?) :: Vector a -> Int -> Maybe a -- O(1)
slice :: Int -> Int -> Vector a -> Vector a -- O(1)

(//) :: Vector a -> [(Int, a)] -> Vector a -- O(m + n)

map :: (a -> b) -> Vector a -> Vector b -- O(n)
filter :: (a -> Bool) -> Vector a -> Vector a -- O(n)
foldr :: (a -> b -> b) -> b -> Vector a -> b -- O(n)

Note the efficient slicing.

Well-Typed

Implementation of vectors

▶ The implementation of the vector library falls back on primitive
built-in arrays implemented directly in GHC.

▶ It additionally stores a lower and upper bound. These are used to
implement the slicing operations.

Well-Typed

Unboxed types, unboxed vectors

The internals of basic types

GHCi> :i Int
data Int = GHC.Types.I# GHC.Prim.Int#

Aha, so GHC thinks Int is yet another datatype?

▶ The GHC.Types and GHC.Prim are just module names.

▶ So there’s one constructor, called I# .
▶ And one argument, of type Int# .

What is an Int# ?

Well-Typed

The internals of basic types

GHCi> :i Int
data Int = GHC.Types.I# GHC.Prim.Int#

Aha, so GHC thinks Int is yet another datatype?

▶ The GHC.Types and GHC.Prim are just module names.

▶ So there’s one constructor, called I# .
▶ And one argument, of type Int# .

What is an Int# ?

Well-Typed

The internals of basic types

GHCi> :i Int
data Int = GHC.Types.I# GHC.Prim.Int#

Aha, so GHC thinks Int is yet another datatype?

▶ The GHC.Types and GHC.Prim are just module names.

▶ So there’s one constructor, called I# .
▶ And one argument, of type Int# .

What is an Int# ?

Well-Typed

The internals of basic types (contd.)

To get names like Int# even through the parser, we have to enable
the MagicHash language extension . . .

GHCi> :i GHC.Prim.Int#
data GHC.Prim.Int# -- Defined in ‘GHC.Prim ’

So this one seems to be really primitive.

Well-Typed

Boxed vs. unboxed types

The type Int# is the type of unboxed integers:

▶ unboxed integers are essentially machine integers,
▶ their memory representation is just bits encoding an integer.

An Int is a boxed integer:

▶ it wraps the unboxed integer in an additional pointer,
▶ thereby introducing an indirection.

Well-Typed

Boxed vs. unboxed types

The type Int# is the type of unboxed integers:

▶ unboxed integers are essentially machine integers,
▶ their memory representation is just bits encoding an integer.

An Int is a boxed integer:

▶ it wraps the unboxed integer in an additional pointer,
▶ thereby introducing an indirection.

Well-Typed

Boxed vs. unboxed types (contd.)

Pro unboxed:

▶ no indirection,
▶ faster,
▶ less space.

Pro boxed:

▶ only boxed types admit laziness,
▶ normal polymorphism scopes only over boxed types.

Boxing makes all types look alike, making it compatible with
suspended computations and polymorphism.

Well-Typed

Boxed vs. unboxed types (contd.)

Pro unboxed:

▶ no indirection,
▶ faster,
▶ less space.

Pro boxed:

▶ only boxed types admit laziness,
▶ normal polymorphism scopes only over boxed types.

Boxing makes all types look alike, making it compatible with
suspended computations and polymorphism.

Well-Typed

Operations on unboxed types

3# :: Int#
3## :: Word#
3.0# :: Float#
3.0## :: Double#
'c'# :: Char#

(+#) :: Int# -> Int# -> Int#
plusWord# :: Word# -> Word# -> Word#
plusFloat# :: Float# -> Float# -> Float#
(+##) :: Double# -> Double# -> Double#

Well-Typed

Type representations

The kind of unboxed types

GHCi> :k Int#
Int# :: TYPE 'IntRep
GHCi> :k Word#
Word# :: TYPE 'WordRep
GHCi> :k Double#
Double# :: TYPE 'DoubleRep

Actually, * is a synonym for TYPE 'PtrRepLifted .

You can think of IntRep , WordRep , and DoubleRep and

PtrRepLifted as just kind parameters.

Well-Typed

The kind of unboxed types

GHCi> :k Int#
Int# :: TYPE 'IntRep
GHCi> :k Word#
Word# :: TYPE 'WordRep
GHCi> :k Double#
Double# :: TYPE 'DoubleRep

Actually, * is a synonym for TYPE 'PtrRepLifted .

You can think of IntRep , WordRep , and DoubleRep and

PtrRepLifted as just kind parameters.

Well-Typed

The kind of unboxed types

GHCi> :k Int#
Int# :: TYPE 'IntRep
GHCi> :k Word#
Word# :: TYPE 'WordRep
GHCi> :k Double#
Double# :: TYPE 'DoubleRep

Actually, * is a synonym for TYPE 'PtrRepLifted .

You can think of IntRep , WordRep , and DoubleRep and

PtrRepLifted as just kind parameters.

Well-Typed

Polymorphism and kinds

Normal polymorphism restricts the kind to lifted types:

id :: a -> a
id x = x

is actually an abbreviated form of

id :: forall (a :: *) . a -> a
id x = x

(which requires ExplicitForAll and KindSignatures).

Well-Typed

Kind errors

All these expressions produce kind errors:

let x = undefined :: []

3# +# 2

id 3#

[3#]

The kind system prevents polymorphic use of unboxed types.

Well-Typed

GHCi

GHCi> id 3#
Couldn’t match lifted type with an unlifted type
When matching the kind of ‘GHC.Prim.Int# ’

Nearly all polymorphic functions are only applicable to normal, lifted
types.

Well-Typed

GHCi

GHCi> id 3#
Couldn’t match lifted type with an unlifted type
When matching the kind of ‘GHC.Prim.Int# ’

Nearly all polymorphic functions are only applicable to normal, lifted
types.

Well-Typed

Levity polymorphism

A select few functions have “levity-polymorphic” types:

GHCi> :i ($)
($) ::
forall (r :: RuntimeRep) a (b :: TYPE r) .
(a -> b) -> a -> b

Function application is compatible with unlifted types if the function
returns an unlifted type.

Well-Typed

Example

unpackInt :: Int -> Int#
unpackInt (I# x) = x

This works due to levity-polymorphic ($) :

GHCi> I# (unpackInt $ 3)
3

Well-Typed

Advice on unboxed types

You very rarely have to use unboxed types directly:

▶ GHC’s optimizer is quite good at removing some unnecessary
boxing and unboxing;

▶ there are libraries that offer good abstractions of internally
unboxed values;

▶ one can instruct GHC to specifically unbox certain values via
UNPACK pragmas.

Well-Typed

Unboxed vectors

The vector package provides unboxed vectors next to the regular,
boxed ones:

▶ provided by the Data.Vector.Unboxed module;
▶ more compact and more local storage;
▶ restricted w.r.t. the element type.

Well-Typed

The Unbox class

General user-defined datatypes cannot be unboxed, so somewhat
necessarily unboxed vectors are only available for a limited class of
element types:

class Unbox a where
...

instance Unbox Int
instance Unbox Float
instance Unbox Double
instance Unbox Char
instance Unbox Bool
instance (Unbox a, Unbox b) => Unbox (a, b)

Well-Typed

The Unbox class

General user-defined datatypes cannot be unboxed, so somewhat
necessarily unboxed vectors are only available for a limited class of
element types:

class Unbox a where
...

instance Unbox Int
instance Unbox Float
instance Unbox Double
instance Unbox Char
instance Unbox Bool
instance (Unbox a, Unbox b) => Unbox (a, b)

Well-Typed

Interface of unboxed vectors

Data.Vector.Unboxed is similar to Data.Vector :

data Vector a -- abstract

empty :: Unbox a => Vector a
generate :: Unbox a => Int -> (Int -> a) -> Vector a
fromList :: Unbox a => [a] -> Vector a

(++) :: Unbox a => Vector a -> Vector a -> Vector a

(!) :: Unbox a => Vector a -> Int -> a
(!?) :: Unbox a => Vector a -> Int -> Maybe a
slice :: Unbox a => Int -> Int -> Vector a -> Vector a

(//) :: Unbox a => Vector a -> [(Int, a)] -> Vector a

map :: (Unbox a, Unbox b) => (a -> b) -> Vector a -> Vector b
filter :: Unbox a => (a -> Bool) -> Vector a -> Vector a
foldr :: Unbox a => (a -> b -> b) -> b -> Vector a -> b

Complexity as before.

Well-Typed

Implementation of unboxed vectors

▶ While the internals of unboxed vectors are partially built into GHC
as well, the outer interface and the Unbox class are actually
implemented as a library.

▶ The library selects an appropriate implementation automatically
depending on the type of array element, by means of a datatype
family. More on (data)type families later.

Well-Typed

Mutable vectors

Ephemeral data structures in Haskell

Some (surprisingly few, but some) algorithms can be implemented
more efficiently in the presence of destructive updates:

▶ Haskell has mutable data structures as well as immutable ones;
▶ most operations on mutable data structures have IO type.

Well-Typed

Mutable vectors

Both Data.Vector.Mutable and
Data.Vector.Unboxed.Mutable export a datatype

data IOVector (a :: *) -- abstract

of mutable vectors.

Well-Typed

Mutable vector interface

new :: Int -> IO (IOVector a)
replicate :: Int -> a -> IO (IOVector a)

read :: IOVector a -> Int -> IO a
write :: IOVector a -> Int -> a -> IO ()
...

Well-Typed

Strings

Haskell strings

By default, Haskell strings are lists of characters:

type String = [Char]

This definition is quite convenient for implementing basic text
processing functions, as one can reuse the rich libraries for lists, but
the list representation is quite inefficient for dealing with large
amounts of text.

Question

How much memory is needed to store a String that is three
characters long?

Well-Typed

Haskell strings

By default, Haskell strings are lists of characters:

type String = [Char]

This definition is quite convenient for implementing basic text
processing functions, as one can reuse the rich libraries for lists, but
the list representation is quite inefficient for dealing with large
amounts of text.

Question

How much memory is needed to store a String that is three
characters long?

Well-Typed

Size of a linked list

▶ Each cons-cell is three words long (info table, two pointers for the
payload).

▶ Each character is boxed, and the box is three words long (info
table, two words for the character).

▶ The empty list is one word (info table, no payload).

So all in all 16 words (or 128 bytes on a 64-bit machine).

In fairness, the empty list is shared, and some frequently used
characters may be shared as well, but still . . .

Well-Typed

Size of a linked list

▶ Each cons-cell is three words long (info table, two pointers for the
payload).

▶ Each character is boxed, and the box is three words long (info
table, two words for the character).

▶ The empty list is one word (info table, no payload).

So all in all 16 words (or 128 bytes on a 64-bit machine).

In fairness, the empty list is shared, and some frequently used
characters may be shared as well, but still . . .

Well-Typed

Size of a linked list

▶ Each cons-cell is three words long (info table, two pointers for the
payload).

▶ Each character is boxed, and the box is three words long (info
table, two words for the character).

▶ The empty list is one word (info table, no payload).

So all in all 16 words (or 128 bytes on a 64-bit machine).

In fairness, the empty list is shared, and some frequently used
characters may be shared as well, but still . . .

Well-Typed

Text

The text package offers

data Text -- abstract

a packed representation of (Unicode) text.

▶ Much less memory overhead than a String .
▶ Still uses UTF-16 encoding per character, so 2 bytes per character.
▶ Performance characteristics more like functional arrays.

Well-Typed

Converting between String and Text

From Data.Text :

pack :: String -> Text -- O(n)
unpack :: Text -> String -- O(n)

Well-Typed

Some common operations

cons :: Char -> Text -> Text -- O(n)
(<>) :: Text -> Text -> Text -- O(n)
length :: Text -> Int -- O(n)
map :: (Char -> Char) -> Text -> Text -- O(n)
filter :: (Char -> Bool) -> Text -> Text -- O(n)
foldr :: (Char -> a -> a) -> a -> Text -> a -- O(n)
toUpper :: Text -> Text -- O(n)
strip :: Text -> Text -- O(n)
lines :: Text -> [Text] -- O(n)
head :: Text -> Char -- O(1)
last :: Text -> Char -- O(1)
index :: Text -> Int -> Char -- O(n)

Well-Typed

Stream fusion

Text makes use of stream fusion internally:

▶ some subsequent traversals, such as multiple map s followed by

a fold , will be fused together, so that only a single traversal is
required.

Well-Typed

Overloaded string literals

With the OverloadedStrings language extension, string literals
become overloaded.

Without:

GHCi> :t "foo"
"foo" :: [Char]

With:

GHCi> :t "foo"
"foo" :: IsString t => t

Well-Typed

Lazy text

The same package also offers a module Data.Text.Lazy with
another

data Text -- abstract

The internal representation is a linked list of chunks, which are strict
text values.

For streaming purposes, not the entire text has to be present in
memory at once.

Well-Typed

Conversion from/to lazy text

Assuming Data.Text.Lazy is available qualified as Lazy :

toStrict :: Lazy.Text -> Text
fromStrict :: Text -> Lazy.Text

Both Text types are an instance of the IsString class.

Well-Typed

Building text

▶ Appending text values is not very efficient.
▶ However, often the building and inspecting phases are separate.
▶ Then it’s useful to build text using Builder , and convert it to

text after building is complete.
▶ Intuitively a builder simply allocates a buffer and fills it with

incoming data.

Well-Typed

Builder interface

Defined in Data.Text.Lazy.Builder :

data Builder -- abstract

toLazyText :: Builder -> Lazy.Text -- O(n)
fromText :: Text -> Builder -- O(1)
fromLazyText :: Lazy.Text -> Builder -- O(1)
(<>) :: Builder -> Builder -> Builder -- O(1)

Well-Typed

ByteString

Available in the bytestring package.

data ByteString -- abstract

A bytestring is a packed representation of a sequence of bytes.

▶ Again, much less memory overhead than a String .

▶ Less overhead even than Text .
▶ No interpretation of the characters (no encoding).
▶ Only useful for ASCII formats or (better) binary data.

Well-Typed

Variants of ByteString

▶ Like Text , ByteString comes with a strict and a lazy variant.

▶ Like Text , both ByteString types are an instance of

IsString .

▶ Like Text , ByteString has a Builder type.

Well-Typed

Conversion between Text and ByteString

As ByteString consists of pure bytes, but Text is interpreted, we
need an encoding in order to translate between the two.

From Data.Text.Encoding :

encodeUtf8 :: Text -> ByteString
decodeUtf8 :: ByteString -> Text -- partial!

Well-Typed

Decoding can fail

Not all byte sequences are valid UTF-8 encodings.

GHCi> decodeUtf8 "x\255"
"*** Exception: Cannot decode byte . . .

If you want to be robust against invalid inputs, you either have to catch
exceptions or use decodeUtf8' :

GHCi> :t decodeUtf8'
decodeUtf8' ::
ByteString -> Either UnicodeException Text

GHCi> isRight $ decodeUtf8' "x\255"
False

Well-Typed

Decoding can fail

Not all byte sequences are valid UTF-8 encodings.

GHCi> decodeUtf8 "x\255"
"*** Exception: Cannot decode byte . . .

If you want to be robust against invalid inputs, you either have to catch
exceptions or use decodeUtf8' :

GHCi> :t decodeUtf8'
decodeUtf8' ::
ByteString -> Either UnicodeException Text

GHCi> isRight $ decodeUtf8' "x\255"
False

Well-Typed

Conversion between String and ByteString

Defined in Data.Text.Char8 :

pack :: String -> ByteString -- unsafe
unpack :: ByteString -> String -- unsafe

Note that these will only work correctly on the ASCII subset of
characters, so these should be used with extreme care.

Well-Typed

More data structures on Hackage

On Hackage, there are several additional libraries for data structures.

Some examples: heaps, priority search queues, hash maps,
heterogeneous lists, zippers, tries, graphs, quadtrees, . . .

Well-Typed

Summary

▶ It is important to keep persistence in mind when thinking about
functional data structures.

▶ Lists are ok for stack-like use or simple traversals.
▶ Good general-purpose data structures are sets, finite maps and

sequences.
▶ Arrays – in particular array updates – should be used with care.
▶ When dealing with textual data, Text and ByteString can be

much more efficient than String .

Well-Typed

