
Lazy Evaluation and Profiling
Haskell Performance

Andres Löh

14–15 May 2018 — Copyright © 2018 Well-Typed LLP

Well-Typed
The Haskell Consultants

The plan

We want to get a better idea about what gets evaluated when:

▶ This is relevant once performance or space use are unexpectedly
bad.

▶ It is also quite important for computations that should run in
parallel.

▶ We will first look at different evaluation strategies.
▶ Then, we discuss how we can influence the default evaluation in

Haskell when we are not happy with it.

Well-Typed

Reduction

Reduction

A subexpression that can be reduced is called a redex.

Most typical form of reduction in Haskell: replacing the left hand side
of a function definition by a corresponding right hand side (this is
essentially beta reduction from lambda calculus).

Question

What if there are multiple redexes in one term?

Well-Typed

Reduction

A subexpression that can be reduced is called a redex.

Most typical form of reduction in Haskell: replacing the left hand side
of a function definition by a corresponding right hand side (this is
essentially beta reduction from lambda calculus).

Question

What if there are multiple redexes in one term?

Well-Typed

Reduction

A subexpression that can be reduced is called a redex.

Most typical form of reduction in Haskell: replacing the left hand side
of a function definition by a corresponding right hand side (this is
essentially beta reduction from lambda calculus).

Question

What if there are multiple redexes in one term?

Well-Typed

Multiple redexes

Many terms have multiple redexes.

How many redexes are in the following term?

id (id (\ z -> id z))

Three redexes:
id (id (\ z -> id z))

(id (\ z -> id z))
id z

(\ x -> \ y -> x * x) (1 + 2) (3 + 4)

Three as well:
(\ x -> \ y -> x * x) (1 + 2)

(1 + 2)
(3 + 4)

Well-Typed

Multiple redexes

Many terms have multiple redexes.

How many redexes are in the following term?

id (id (\ z -> id z))

Three redexes:
id (id (\ z -> id z))

(id (\ z -> id z))
id z

(\ x -> \ y -> x * x) (1 + 2) (3 + 4)

Three as well:
(\ x -> \ y -> x * x) (1 + 2)

(1 + 2)
(3 + 4)

Well-Typed

Multiple redexes

Many terms have multiple redexes.

How many redexes are in the following term?

id (id (\ z -> id z))

Three redexes:
id (id (\ z -> id z))

(id (\ z -> id z))
id z

(\ x -> \ y -> x * x) (1 + 2) (3 + 4)

Three as well:
(\ x -> \ y -> x * x) (1 + 2)

(1 + 2)
(3 + 4)

Well-Typed

Multiple redexes

Many terms have multiple redexes.

How many redexes are in the following term?

id (id (\ z -> id z))

Three redexes:
id (id (\ z -> id z))

(id (\ z -> id z))
id z

(\ x -> \ y -> x * x) (1 + 2) (3 + 4)

Three as well:
(\ x -> \ y -> x * x) (1 + 2)

(1 + 2)
(3 + 4)

Well-Typed

Example

Let us play through the possible reductions for the following terms:

head (repeat 1)

let
minimum xs = head (sort xs)

in
minimum [4, 1, 3]

Well-Typed

Example

Let us play through the possible reductions for the following terms:

head (repeat 1)

let
minimum xs = head (sort xs)

in
minimum [4, 1, 3]

Well-Typed

Evaluation strategies

Haskell’s lazy evaluation

In Haskell,

▶ expressions are only evaluated if actually required,
▶ the leftmost outermost redex is chosen to achieve this,
▶ sharing is introduced (whenever an identifier is bound to an

expression) in order to prevent evaluating expressions multiple
times.

If no redexes are left, an expression is in normal form. If the top-level
of an expression is a constructor or lambda, then the expression is in
(weak) head normal form.

Well-Typed

Haskell’s lazy evaluation

In Haskell,

▶ expressions are only evaluated if actually required,
▶ the leftmost outermost redex is chosen to achieve this,
▶ sharing is introduced (whenever an identifier is bound to an

expression) in order to prevent evaluating expressions multiple
times.

If no redexes are left, an expression is in normal form. If the top-level
of an expression is a constructor or lambda, then the expression is in
(weak) head normal form.

Well-Typed

Common evaluation strategies

Call by value / eager (strict) evaluation

Most common. Arguments are reduced as far as possible before
reducing a function application, usually left-to-right.

Call by name

Functions are reduced before their arguments. Used by some macro
languages (TEX, for instance).

Well-Typed

Common evaluation strategies

Call by value / eager (strict) evaluation

Most common. Arguments are reduced as far as possible before
reducing a function application, usually left-to-right.

Call by name

Functions are reduced before their arguments. Used by some macro
languages (TEX, for instance).

Well-Typed

Common evaluation strategies (contd.)

Call by need / lazy evaluation

Optimized version of “Call by name”: function arguments are only
reduced when needed, but shared if used multiple times.

\ f g x -> combine (f x) (g x)

Well-Typed

Church-Rosser

Theorem (Church-Rosser)

If a term e can be reduced to e1 and e2 , there is a term e3 such
that both e1 and e2 can be reduced to e3 .

Corollary

Each term has at most one normal form.

Theorem

If a term has a normal form, then lazy evaluation arrives at this normal
form.

Well-Typed

Church-Rosser

Theorem (Church-Rosser)

If a term e can be reduced to e1 and e2 , there is a term e3 such
that both e1 and e2 can be reduced to e3 .

Corollary

Each term has at most one normal form.

Theorem

If a term has a normal form, then lazy evaluation arrives at this normal
form.

Well-Typed

Church-Rosser

Theorem (Church-Rosser)

If a term e can be reduced to e1 and e2 , there is a term e3 such
that both e1 and e2 can be reduced to e3 .

Corollary

Each term has at most one normal form.

Theorem

If a term has a normal form, then lazy evaluation arrives at this normal
form.

Well-Typed

Example: the first 100 odd square numbers

example :: [Int]
example = [1 . .]

We start by generating all numbers (lazy evaluation in action).

Well-Typed

Example: the first 100 odd square numbers

example :: [Int]
example = map (\ x -> x * x) [1 . .]

We use map to compute the square numbers.

Well-Typed

Example: the first 100 odd square numbers

example :: [Int]
example = (filter odd . map (\ x -> x * x)) [1 . .]

We use function composition composition (and partial application) to
subsequently filter the odd square numbers.

Well-Typed

Example: the first 100 odd square numbers

example :: [Int]
example = (take 100 . filter odd . map (\ x -> x * x)) [1 . .]

Finally, we use composition again to take the first 100 elements of this
list.

Well-Typed

What drives the evaluation?

If we type an expression in at the GHCi prompt:

▶ GHCi wants to print its result,
▶ and for printing, we need that expression in normal form,
▶ that then demands other expressions to be evaluated.

Similarly for a complete program.

Within a function, it is most often pattern matching that drives the
evaluation:

▶ in order to produce part of the output, we have to select a case;
▶ in order to be able to choose a case, we have to evaluate some of

the arguments just far enough.

Evaluating a term to weak head normal form (WHNF) reveals its
outermost constructor and allows us to potentially make a choice in a
pattern match.

Well-Typed

What drives the evaluation?

If we type an expression in at the GHCi prompt:

▶ GHCi wants to print its result,
▶ and for printing, we need that expression in normal form,
▶ that then demands other expressions to be evaluated.

Similarly for a complete program.

Within a function, it is most often pattern matching that drives the
evaluation:

▶ in order to produce part of the output, we have to select a case;
▶ in order to be able to choose a case, we have to evaluate some of

the arguments just far enough.

Evaluating a term to weak head normal form (WHNF) reveals its
outermost constructor and allows us to potentially make a choice in a
pattern match.

Well-Typed

What drives the evaluation?

If we type an expression in at the GHCi prompt:

▶ GHCi wants to print its result,
▶ and for printing, we need that expression in normal form,
▶ that then demands other expressions to be evaluated.

Similarly for a complete program.

Within a function, it is most often pattern matching that drives the
evaluation:

▶ in order to produce part of the output, we have to select a case;
▶ in order to be able to choose a case, we have to evaluate some of

the arguments just far enough.

Evaluating a term to weak head normal form (WHNF) reveals its
outermost constructor and allows us to potentially make a choice in a
pattern match.

Well-Typed

Tracking demand

If we want to understand what gets evaluated when, we have to track
the demand, and this usually happens backwards.

Typical question

If we need the result of a function to be evaluated to WHNF, what
effect (if any) does this have on the argument(s) of the function?

Let us look at a few examples.

Well-Typed

Tracking demand (contd.)

id x = x

Demanding the result causes demanding the argument.

const x y = x

Demanding the result causes demanding the first argument (but not
the second).

True || _ = True
False || y = y

Demanding the result causes demanding the first argument, and
depending on that might cause demanding the second.

Well-Typed

Tracking demand (contd.)

id x = x

Demanding the result causes demanding the argument.

const x y = x

Demanding the result causes demanding the first argument (but not
the second).

True || _ = True
False || y = y

Demanding the result causes demanding the first argument, and
depending on that might cause demanding the second.

Well-Typed

Tracking demand (contd.)

id x = x

Demanding the result causes demanding the argument.

const x y = x

Demanding the result causes demanding the first argument (but not
the second).

True || _ = True
False || y = y

Demanding the result causes demanding the first argument, and
depending on that might cause demanding the second.

Well-Typed

Tracking demand (contd.)

map f [] = []
map f (x : xs) = f x : map f xs

Demanding the result causes demanding the second argument (but
not the first).

Well-Typed

Devising a test for demand propagation

Do we have to look at the code in order to track demand?

Idea:

▶ Feed a non-terminating computation into a function and demand
its result.

▶ If the function produces a result, then it cannot have demanded
its argument.

▶ If the function loops, then we do not know whether we demanded
the argument, or the loop arises from elsewhere – but (assuming
we identify all loops and run-time exceptions), it is safe to assume
that it did, as it would not have changed the result.

Well-Typed

Devising a test for demand propagation

Do we have to look at the code in order to track demand?

Idea:

▶ Feed a non-terminating computation into a function and demand
its result.

▶ If the function produces a result, then it cannot have demanded
its argument.

▶ If the function loops, then we do not know whether we demanded
the argument, or the loop arises from elsewhere – but (assuming
we identify all loops and run-time exceptions), it is safe to assume
that it did, as it would not have changed the result.

Well-Typed

Devising a test for demand propagation

Do we have to look at the code in order to track demand?

Idea:

▶ Feed a non-terminating computation into a function and demand
its result.

▶ If the function produces a result, then it cannot have demanded
its argument.

▶ If the function loops, then we do not know whether we demanded
the argument, or the loop arises from elsewhere – but (assuming
we identify all loops and run-time exceptions), it is safe to assume
that it did, as it would not have changed the result.

Well-Typed

Devising a test for demand propagation

Do we have to look at the code in order to track demand?

Idea:

▶ Feed a non-terminating computation into a function and demand
its result.

▶ If the function produces a result, then it cannot have demanded
its argument.

▶ If the function loops, then we do not know whether we demanded
the argument, or the loop arises from elsewhere – but (assuming
we identify all loops and run-time exceptions), it is safe to assume
that it did, as it would not have changed the result.

Well-Typed

Strict functions

Definition

A (one-argument) function f is called strict if and only if

f ⊥ = ⊥

Here, ⊥ denotes any crashing or looping computation.

Note

In a strict language, all functions are strict.

In a non-strict language, such as Haskell, we have both strict and
non-strict functions.

Well-Typed

Strict functions

Definition

A (one-argument) function f is called strict if and only if

f ⊥ = ⊥

Here, ⊥ denotes any crashing or looping computation.

Note

In a strict language, all functions are strict.

In a non-strict language, such as Haskell, we have both strict and
non-strict functions.

Well-Typed

Lazy evaluation quiz

(\ x -> x) True ⇝*

True

(\ x -> x) ⊥ ⇝*

⊥

(\ x -> ()) ⊥ ⇝*

()

(\ x -> ⊥) () ⇝*

⊥

(\ x f -> f x) ⊥ ⇝*

\ f -> f ⊥

length (map ⊥ [1, 2]) ⇝*

2

Well-Typed

Lazy evaluation quiz

(\ x -> x) True ⇝* True

(\ x -> x) ⊥ ⇝*

⊥

(\ x -> ()) ⊥ ⇝*

()

(\ x -> ⊥) () ⇝*

⊥

(\ x f -> f x) ⊥ ⇝*

\ f -> f ⊥

length (map ⊥ [1, 2]) ⇝*

2

Well-Typed

Lazy evaluation quiz

(\ x -> x) True ⇝* True

(\ x -> x) ⊥ ⇝* ⊥
(\ x -> ()) ⊥ ⇝*

()

(\ x -> ⊥) () ⇝*

⊥

(\ x f -> f x) ⊥ ⇝*

\ f -> f ⊥

length (map ⊥ [1, 2]) ⇝*

2

Well-Typed

Lazy evaluation quiz

(\ x -> x) True ⇝* True

(\ x -> x) ⊥ ⇝* ⊥
(\ x -> ()) ⊥ ⇝* ()

(\ x -> ⊥) () ⇝*

⊥

(\ x f -> f x) ⊥ ⇝*

\ f -> f ⊥

length (map ⊥ [1, 2]) ⇝*

2

Well-Typed

Lazy evaluation quiz

(\ x -> x) True ⇝* True

(\ x -> x) ⊥ ⇝* ⊥
(\ x -> ()) ⊥ ⇝* ()

(\ x -> ⊥) () ⇝* ⊥
(\ x f -> f x) ⊥ ⇝*

\ f -> f ⊥

length (map ⊥ [1, 2]) ⇝*

2

Well-Typed

Lazy evaluation quiz

(\ x -> x) True ⇝* True

(\ x -> x) ⊥ ⇝* ⊥
(\ x -> ()) ⊥ ⇝* ()

(\ x -> ⊥) () ⇝* ⊥
(\ x f -> f x) ⊥ ⇝* \ f -> f ⊥
length (map ⊥ [1, 2]) ⇝*

2

Well-Typed

Lazy evaluation quiz

(\ x -> x) True ⇝* True

(\ x -> x) ⊥ ⇝* ⊥
(\ x -> ()) ⊥ ⇝* ()

(\ x -> ⊥) () ⇝* ⊥
(\ x f -> f x) ⊥ ⇝* \ f -> f ⊥
length (map ⊥ [1, 2]) ⇝* 2

Well-Typed

Observing evaluation

For debugging purposes, you can observe when something gets
evaluated using trace from Debug.Trace :

trace :: String -> a -> a
traceShow :: Show a => a -> b -> b

The trace functions print their first argument as soon as the second
is being evaluated.

Question: How many symbols are printed, in what order?

x .: xs = trace ":" (x : xs)
nil = trace "." []
num x = trace "0" x
list = foldr (.:) nil (map num [1 . . 10])

main = print $ sum (take 2 (drop 3 list))

Well-Typed

Observing evaluation

For debugging purposes, you can observe when something gets
evaluated using trace from Debug.Trace :

trace :: String -> a -> a
traceShow :: Show a => a -> b -> b

The trace functions print their first argument as soon as the second
is being evaluated.

Question: How many symbols are printed, in what order?

x .: xs = trace ":" (x : xs)
nil = trace "." []
num x = trace "0" x
list = foldr (.:) nil (map num [1 . . 10])

main = print $ sum (take 2 (drop 3 list))

Well-Typed

Space leaks and profiling

Haskell data in memory

As we’ve discussed earlier:

▶ nearly all Haskell data lives on the heap,
▶ nearly all Haskell data is immutable,
▶ operations do not change data but rather create new data on the

heap,
▶ a lot of data is shared.

Sharing is easy because everything is immutable.

Well-Typed

Haskell data in memory

As we’ve discussed earlier:

▶ nearly all Haskell data lives on the heap,
▶ nearly all Haskell data is immutable,
▶ operations do not change data but rather create new data on the

heap,
▶ a lot of data is shared.

Sharing is easy because everything is immutable.

Well-Typed

Laziness on the heap

Bindings are not evaluated immediately:

▶ Instead, suspended computations (called thunks) are created on
the heap.

▶ Thunks can be shared just as other subterms.
▶ If a thunk is required, it is evaluated and destructively updated on

the heap.
▶ However, this is a safe and even desirable update – we don’t

change the value stored, we just change its representation.
▶ Other computations sharing the updated thunk won’t have to

recompute the expression.

Well-Typed

Garbage collection

GHC uses a generational garbage collector:

▶ Optimized for lots of short-lived data, as is common in a purely
functional language.

▶ New data is allocated in the “young” generation.
▶ The young generation is rather small and collected often.
▶ After a while, data that is still alive is moved to the “old”

generation.
▶ The old generation is larger and collected rarely.
▶ The heap of a Haskell program can grow dynamically if more

memory is needed.

Well-Typed

The lifetime of data

Data is alive as long as there are references to it.

In a lazy setting, it is sometimes hard to predict how long we retain
references to data.

Space leak

A data structure which grows bigger, or lives longer, than we expect.

As space is a limited resource, we might run (nearly) out of it.
Consequences:

▶ more garbage collections cost extra time,
▶ swapping,
▶ program might get killed.

Well-Typed

The lifetime of data

Data is alive as long as there are references to it.

In a lazy setting, it is sometimes hard to predict how long we retain
references to data.

Space leak

A data structure which grows bigger, or lives longer, than we expect.

As space is a limited resource, we might run (nearly) out of it.
Consequences:

▶ more garbage collections cost extra time,
▶ swapping,
▶ program might get killed.

Well-Typed

The lifetime of data

Data is alive as long as there are references to it.

In a lazy setting, it is sometimes hard to predict how long we retain
references to data.

Space leak

A data structure which grows bigger, or lives longer, than we expect.

As space is a limited resource, we might run (nearly) out of it.
Consequences:

▶ more garbage collections cost extra time,
▶ swapping,
▶ program might get killed.

Well-Typed

Computing a large sum

sum1 [] = 0
sum1 (x : xs) = x + sum1 xs

▶ A straight-forward definition, following the standard pattern of
defining functions on lists.

▶ What is the problem?

▶ If we try to evaluate this function for larger and larger input lists,
we note that it takes more and more memory, and significant
amounts of time, or we get an error indicating it runs out of stack
space.

▶ But certainly we should be able to sum a list in (nearly) constant
(stack) space? What is going on?

Well-Typed

Computing a large sum

sum1 [] = 0
sum1 (x : xs) = x + sum1 xs

▶ A straight-forward definition, following the standard pattern of
defining functions on lists.

▶ What is the problem?
▶ If we try to evaluate this function for larger and larger input lists,

we note that it takes more and more memory, and significant
amounts of time, or we get an error indicating it runs out of stack
space.

▶ But certainly we should be able to sum a list in (nearly) constant
(stack) space? What is going on?

Well-Typed

Obtaining more information

Haskell’s run-time system (RTS) can be instructed to spit out additional
information:

▶ RTS options can be passed to Haskell binaries on the command
line by placing them after +RTS or enclosing them between +RTS
and -RTS.

▶ Many RTS flags require the binary to be compiled (or rather
linked) using the -rtsopts GHC flag.

▶ You can obtain info about available RTS flags by invoking a
compiled binary with +RTS --help.

▶ Very interesting are GC statistics (available in various amounts of
detail via -t, -s or -S).

▶ You can increase the stack space by saying something like -K50M
or -K500M.

Well-Typed

GC statistics

$./Sum1 10000000 +RTS -s -K500M
50000005000000

1,532,401,936 bytes allocated in the heap
788,992,048 bytes copied during GC
457,301,152 bytes maximum residency (10 sample(s))

740,216 bytes maximum slop
633 MB total memory in use (0 MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause
Gen 0 2299 colls, 0 par 0.83s 0.83s 0.0004s 0.0008s
Gen 1 10 colls, 0 par 0.60s 0.60s 0.0602s 0.2877s

INIT time 0.00s (0.00s elapsed)
MUT time 0.46s (0.46s elapsed)
GC time 1.43s (1.43s elapsed)
EXIT time 0.00s (0.00s elapsed)
Total time 1.89s (1.88s elapsed)

%GC time 75.8% (75.8% elapsed)

Alloc rate 3,352,283,510 bytes per MUT second

Productivity 24.2% of total user, 24.3% of total elapsed

MUT (mutator) time is good, GC time is bad.

Maximum residency and percentage of GC time are revealing.

Well-Typed

Heap profiling

More detailed information can be obtained using heap profiling.

▶ Requires recompilation of the program (makes program larger
and overall slower).

▶ All used libraries must have profiling versions, too.
▶ In your cabal-install config file, put

library-profiling: True

for the future.
▶ Compile a program with profiling enabled:

$ ghc --make -prof -auto-all -rtsopts Sum1

The -auto-all is optional. It is more important for larger
programs where you not only want to know howmuch space is
being used, but also where it is being used.

Well-Typed

Heap profiling – contd.

▶ Run with profiling enabled:
$./Sum1 10000000 +RTS -K800M -hc

Again, there are many different -h flags.
▶ The -hc is for cost-center profiling.
▶ A very simplistic form of heap profiling via just -h is available even

without compiling the program for profiling. It would be sufficient
here!

▶ Files Sum1.prof and Sum1.hp are produced.
▶ The .hp file can be transformed into PostScript format using the
hp2ps tool.

$ hp2ps Sum1.hp

Well-Typed

Heap profile for sum1

Sum1 10000000 +RTS -hc -K600M 65,268,660 bytes x seconds Tue May 15 14:55 2012

seconds0.0 0.2 0.4 0.6

b
y
te

s

0M

20M

40M

60M

80M

100M

120M

(99)sum1/main/Main.CAF

Well-Typed

The problem

sum1 [1, 2, 3, 4, ...]

= { Definition of sum1 }

1 + sum1 [2, 3, 4, ...]

= { Definition of sum1 }

1 + (2 + sum1 [3, 4, ...])

= { Definition of sum1 }

1 + (2 + (3 + sum1 [4, ...]))

=

...

The whole recursion has to be unfolded before the first addition can be
reduced!

Well-Typed

Attempting a tail-recursive version

sum2 xs = go 0 xs
where
go acc [] = acc
go acc (x : xs) = go (acc + x) xs

We hope that tail-recursion improves stack usage, and might thereby
improve space behaviour as well, but . . .

Well-Typed

Heap profile for sum2

Sum2 10000000 +RTS -hc -K600M 275,474,897 bytes x seconds Tue May 15 15:07 2012

seconds0.0 0.2 0.4 0.6 0.8

b
y
te

s

0M

50M

100M

150M

200M

250M

300M

350M

400M

(98)main/Main.CAF

(100)sum2.go/sum2/main/Mai...

Well-Typed

The new problem

sum2 [1, 2, 3, 4, ...]
= { Definition of sum2 }

sum2' 0 [1, 2, 3, 4, ...]
= { Definition of sum2 }

sum2' (0 + 1) [2, 3, 4, ...]
= { Definition of sum2 }

sum2' ((0 + 1) + 2) [3, 4, ...]
...

=
sum2' (...((0 + 1) + 2)...) []

= { Definition of sum2 }
(...(0 + 1) + 2)...)

We still build up the whole addition, but now in an accumulating
argument! Evaluating that still takes stack!

Well-Typed

Controlling evaluation

We need more control

Sometimes, we want to make things stricter than they are by default.
Here:

▶ we have a computation that will be evaluated anyway,
▶ storing it in delayed form costs much more space than storing its

result.

Well-Typed

Forcing evaluation

Haskell has the following primitive function

seq :: a -> b -> b -- primitive

The call seq x y is strict in x and returns y .

The function seq can be used to define strict function application:

($!) :: (a -> b) -> a -> b
f $! x = x `seq` f x

Recall sharing!

Well-Typed

Forcing evaluation

Haskell has the following primitive function

seq :: a -> b -> b -- primitive

The call seq x y is strict in x and returns y .

The function seq can be used to define strict function application:

($!) :: (a -> b) -> a -> b
f $! x = x `seq` f x

Recall sharing!

Well-Typed

Forcing quiz

The function seq only evaluates to WHNF (i.e., a lambda abstraction,
literal or constructor application).

(\ x -> ()) $! ⊥ ⇝*

⊥

seq (⊥, ⊥) () ⇝*

()

snd $! (⊥, 1) ⇝*

1

(\ x -> ()) $! (\ x -> ⊥) ⇝*

()

length $! map ⊥ [1, 2] ⇝*

2

seq (⊥ + 1) () ⇝*

⊥

seq (1 : ⊥) () ⇝*

()

Well-Typed

Forcing quiz

The function seq only evaluates to WHNF (i.e., a lambda abstraction,
literal or constructor application).

(\ x -> ()) $! ⊥ ⇝*

⊥

seq (⊥, ⊥) () ⇝*

()

snd $! (⊥, 1) ⇝*

1

(\ x -> ()) $! (\ x -> ⊥) ⇝*

()

length $! map ⊥ [1, 2] ⇝*

2

seq (⊥ + 1) () ⇝*

⊥

seq (1 : ⊥) () ⇝*

()

Well-Typed

Forcing quiz

The function seq only evaluates to WHNF (i.e., a lambda abstraction,
literal or constructor application).

(\ x -> ()) $! ⊥ ⇝* ⊥
seq (⊥, ⊥) () ⇝*

()

snd $! (⊥, 1) ⇝*

1

(\ x -> ()) $! (\ x -> ⊥) ⇝*

()

length $! map ⊥ [1, 2] ⇝*

2

seq (⊥ + 1) () ⇝*

⊥

seq (1 : ⊥) () ⇝*

()

Well-Typed

Forcing quiz

The function seq only evaluates to WHNF (i.e., a lambda abstraction,
literal or constructor application).

(\ x -> ()) $! ⊥ ⇝* ⊥
seq (⊥, ⊥) () ⇝* ()

snd $! (⊥, 1) ⇝*

1

(\ x -> ()) $! (\ x -> ⊥) ⇝*

()

length $! map ⊥ [1, 2] ⇝*

2

seq (⊥ + 1) () ⇝*

⊥

seq (1 : ⊥) () ⇝*

()

Well-Typed

Forcing quiz

The function seq only evaluates to WHNF (i.e., a lambda abstraction,
literal or constructor application).

(\ x -> ()) $! ⊥ ⇝* ⊥
seq (⊥, ⊥) () ⇝* ()

snd $! (⊥, 1) ⇝* 1

(\ x -> ()) $! (\ x -> ⊥) ⇝*

()

length $! map ⊥ [1, 2] ⇝*

2

seq (⊥ + 1) () ⇝*

⊥

seq (1 : ⊥) () ⇝*

()

Well-Typed

Forcing quiz

The function seq only evaluates to WHNF (i.e., a lambda abstraction,
literal or constructor application).

(\ x -> ()) $! ⊥ ⇝* ⊥
seq (⊥, ⊥) () ⇝* ()

snd $! (⊥, 1) ⇝* 1

(\ x -> ()) $! (\ x -> ⊥) ⇝* ()

length $! map ⊥ [1, 2] ⇝*

2

seq (⊥ + 1) () ⇝*

⊥

seq (1 : ⊥) () ⇝*

()

Well-Typed

Forcing quiz

The function seq only evaluates to WHNF (i.e., a lambda abstraction,
literal or constructor application).

(\ x -> ()) $! ⊥ ⇝* ⊥
seq (⊥, ⊥) () ⇝* ()

snd $! (⊥, 1) ⇝* 1

(\ x -> ()) $! (\ x -> ⊥) ⇝* ()

length $! map ⊥ [1, 2] ⇝* 2

seq (⊥ + 1) () ⇝*

⊥

seq (1 : ⊥) () ⇝*

()

Well-Typed

Forcing quiz

The function seq only evaluates to WHNF (i.e., a lambda abstraction,
literal or constructor application).

(\ x -> ()) $! ⊥ ⇝* ⊥
seq (⊥, ⊥) () ⇝* ()

snd $! (⊥, 1) ⇝* 1

(\ x -> ()) $! (\ x -> ⊥) ⇝* ()

length $! map ⊥ [1, 2] ⇝* 2

seq (⊥ + 1) () ⇝* ⊥
seq (1 : ⊥) () ⇝*

()

Well-Typed

Forcing quiz

The function seq only evaluates to WHNF (i.e., a lambda abstraction,
literal or constructor application).

(\ x -> ()) $! ⊥ ⇝* ⊥
seq (⊥, ⊥) () ⇝* ()

snd $! (⊥, 1) ⇝* 1

(\ x -> ()) $! (\ x -> ⊥) ⇝* ()

length $! map ⊥ [1, 2] ⇝* 2

seq (⊥ + 1) () ⇝* ⊥
seq (1 : ⊥) () ⇝* ()

Well-Typed

Using seq to force the addition

sum3 xs = go 0 xs
where
go acc [] = acc
go acc (x : xs) = (go $! acc + x) xs

Well-Typed

Heap profile for sum3

Sum3 10000000 +RTS -hc -s 30,953 bytes x seconds Tue May 15 15:34 2012

seconds0.0 0.2 0.4 0.6 0.8

b
y
te

s

0k

5k

10k

15k

20k

25k

30k

(98)main/Main.CAF

(66)GHC.Conc.Signal.CAF

(61)GHC.IO.Handle.FD.CAF

(82)GHC.IO.Encoding.CAF

(51)PINNED

Well-Typed

GC statistics

$./Sum3 10000000 +RTS -hc -s
50000005000000

2,560,118,208 bytes allocated in the heap
714,144 bytes copied during GC
62,104 bytes maximum residency (10 sample(s))
26,344 bytes maximum slop

1 MB total memory in use (0 MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause
Gen 0 4873 colls, 0 par 0.02s 0.02s 0.0000s 0.0000s
Gen 1 10 colls, 0 par 0.00s 0.00s 0.0001s 0.0001s

INIT time 0.00s (0.00s elapsed)
MUT time 0.95s (0.95s elapsed)
GC time 0.02s (0.02s elapsed)
RP time 0.00s (0.00s elapsed)
PROF time 0.00s (0.00s elapsed)
EXIT time 0.00s (0.00s elapsed)
Total time 0.98s (0.98s elapsed)

%GC time 2.3% (2.2% elapsed)

Alloc rate 2,684,947,785 bytes per MUT second

Productivity 97.6% of total user, 97.6% of total elapsed

Look at the maximum residency and GC time / productivity now.

Well-Typed

Standard recursion patterns

The three versions of sum we have seen correspond to using foldr
, foldl and foldl' , respectively:

sum1 = foldr (+) 0

sum2 = foldl (+) 0

sum3 = foldl' (+) 0

Well-Typed

Question

Is using foldl' /strictness always preferable?

For example, what about defining map . . .

Well-Typed

Question

Is using foldl' /strictness always preferable?

For example, what about defining map . . .

Well-Typed

Rules of thumb

▶ If you expect partial results or want to use infinite lists, use
foldr .

Examples: map , filter .

▶ If the operator is strict, use foldl' .

Examples: sum , product .

▶ Otherwise, use foldl .

Examples: reverse .
▶ Use the GHC optimizer by passing -O. GHC performs strictness

analysis to optimize your code – but don’t rely on it to always
figure out everything!

Well-Typed

Strictness analysis

Back to our example

This is the tail-recursive version of sum again:

sum2 :: [Int] -> Int
sum2 xs = go 0 xs
where
go acc [] = acc
go acc (x : xs) = go (acc + x) xs

Let’s perform strictness analysis!

Well-Typed

Looking at the Core code

You can spit out GHC Core after optimization by saying -ddump-simpl
– reading the result requires some experience, but can show what
optimizations GHC performs.

The result of sum2 without optimization:

SumStrict.sum :: [GHC.Types.Int] -> GHC.Types.Int
[GblId, Arity=1]
SumStrict.sum =

\ (xs_aan :: [GHC.Types.Int]) ->
letrec {
go_aao [Occ=LoopBreaker]

:: GHC.Types.Int -> [GHC.Types.Int] -> GHC.Types.Int
[LclId, Arity=2]
go_aao =

\ (acc_aap :: GHC.Types.Int) (ds_daU :: [GHC.Types.Int]) ->
case ds_daU of _ {

[] -> acc_aap;
: x_aar xs1_aas ->
go_aao
(GHC.Num.+ @ GHC.Types.Int GHC.Num.$fNumInt acc_aap x_aar) xs1_aas

}; } in
go_aao (GHC.Types.I# 0) xs_aan

Well-Typed

Looking at the Core code (contd.)

Some observations about GHC Core:

▶ all names are fully qualified;
▶ symbolic names are escaped;
▶ nested pattern matches are compiled to simple pattern matches;
▶ everything is type-annotated;
▶ literals are unboxed, boxing is explicit;
▶ polymorphic functions have explicit type arguments

(@GHC.Types.Int);
▶ overloaded functions are passed dictionaries

(GHC.Num.$fNumInt).

Well-Typed

Looking at the Core code (contd.)

Excerpts from the optimized version:

SumStrict.sum :: [GHC.Types.Int] -> GHC.Types.Int
SumStrict.sum =

\ (xs_aan :: [GHC.Types.Int]) ->
case SumStrict.$wgo 0 xs_aan of ww_sbN { __DEFAULT ->
GHC.Types.I# ww_sbN
}

SumStrict.$wgo [Occ=LoopBreaker]
:: GHC.Prim.Int# -> [GHC.Types.Int] -> GHC.Prim.Int#

SumStrict.$wgo =
\ (ww_sbI :: GHC.Prim.Int#) (w_sbK :: [GHC.Types.Int]) ->

case w_sbK of _ {
[] -> ww_sbI;
: x_aar xs_aas ->

case x_aar of _ { GHC.Types.I# y_abo ->
SumStrict.$wgo (GHC.Prim.+# ww_sbI y_abo) xs_aas
}

}

Due to strictness analysis, GHC can actually unbox the Int
accumulator.

Well-Typed

Looking at the Core code (contd.)

Excerpts from the optimized version:

SumStrict.sum :: [GHC.Types.Int] -> GHC.Types.Int
SumStrict.sum =

\ (xs_aan :: [GHC.Types.Int]) ->
case SumStrict.$wgo 0 xs_aan of ww_sbN { __DEFAULT ->
GHC.Types.I# ww_sbN
}

SumStrict.$wgo [Occ=LoopBreaker]
:: GHC.Prim.Int# -> [GHC.Types.Int] -> GHC.Prim.Int#

SumStrict.$wgo =
\ (ww_sbI :: GHC.Prim.Int#) (w_sbK :: [GHC.Types.Int]) ->

case w_sbK of _ {
[] -> ww_sbI;
: x_aar xs_aas ->

case x_aar of _ { GHC.Types.I# y_abo ->
SumStrict.$wgo (GHC.Prim.+# ww_sbI y_abo) xs_aas
}

}

Due to strictness analysis, GHC can actually unbox the Int
accumulator.

Well-Typed

Looking at the Core code (contd.)

Excerpts from the optimized version:

SumStrict.sum :: [GHC.Types.Int] -> GHC.Types.Int
SumStrict.sum =

\ (xs_aan :: [GHC.Types.Int]) ->
case SumStrict.$wgo 0 xs_aan of ww_sbN { __DEFAULT ->
GHC.Types.I# ww_sbN
}

SumStrict.$wgo [Occ=LoopBreaker]
:: GHC.Prim.Int# -> [GHC.Types.Int] -> GHC.Prim.Int#

SumStrict.$wgo =
\ (ww_sbI :: GHC.Prim.Int#) (w_sbK :: [GHC.Types.Int]) ->

case w_sbK of _ {
[] -> ww_sbI;
: x_aar xs_aas ->

case x_aar of _ { GHC.Types.I# y_abo ->
SumStrict.$wgo (GHC.Prim.+# ww_sbI y_abo) xs_aas
}

}

Due to strictness analysis, GHC can actually unbox the Int
accumulator.

Well-Typed

More on controlling strictness

The type of seq

Question: Why is the type of seq

seq :: a -> b -> b

and not, for example,

seq' :: a -> a
seq' x = seq x x -- example definition

?

Remember: Everything is demand driven!

In seq x y , the evaluation of x is tied to the demand for y .

In seq x x , the evaluation of x is tied to the demand for x –
which it is anyway.

Well-Typed

The type of seq

Question: Why is the type of seq

seq :: a -> b -> b

and not, for example,

seq' :: a -> a
seq' x = seq x x -- example definition

?

Remember: Everything is demand driven!

In seq x y , the evaluation of x is tied to the demand for y .

In seq x x , the evaluation of x is tied to the demand for x –
which it is anyway.

Well-Typed

Bang patterns

Instead of using seq or ($!) , we can also make the pattern match
evaluate more than it normally would . . .

Well-Typed

Bang patterns

sum4 xs = go 0 xs
where
go !acc [] = acc
go !acc (x : xs) = go (acc + x) xs

. . . we can also use bang patterns.

A ! in front of a variable pattern makes GHC evaluate the matched
term to WHNF before continuing, even if this evaluation is not needed
to make the decision for a particular case.

This requires the BangPatterns extension.

Well-Typed

Irrefutable (lazy) patterns

A less known feature of Haskell is that it supports (without an
extension) irrefutable patterns.

Consider this definition:

unzip :: [(a, b)] -> ([a], [b])
unzip =
foldr (\ (x, y) (xs, ys) -> (x : xs, y : ys)) ([], [])

Now both of

let zs = [1 . .] in unzip (zip zs zs)
let zs = [1 . . 10000000] in unzip (zip zs zs)

result in a stack overflow. Why?

Well-Typed

Irrefutable (lazy) patterns

A less known feature of Haskell is that it supports (without an
extension) irrefutable patterns.

Consider this definition:

unzip :: [(a, b)] -> ([a], [b])
unzip =
foldr (\ (x, y) (xs, ys) -> (x : xs, y : ys)) ([], [])

Now both of

let zs = [1 . .] in unzip (zip zs zs)
let zs = [1 . . 10000000] in unzip (zip zs zs)

result in a stack overflow. Why?

Well-Typed

Unfolding the too strict unzip

unzip [(1, 1)] (2, 2)

= { Definition of unzip }

foldr (\ (x, y) (xs, ys) -> (x : xs, y : ys)) ([], [])
[(1, 1)] (2, 2)

= { Definition of foldr }

(\ (x, y) (xs, ys) -> (x : xs, y : ys)) (1, 1)
(foldr...[(2, 2)])

= { Matching the first pair }

(\ (xs, ys) -> (1 : xs, 1 : ys)) (foldr...[(2, 2)])

At this point, we cannot reduce the function without first evaluation foldr
further.

Well-Typed

Introducing lazy patterns

A better definition is

unzip :: [(a, b)] -> ([a], [b])
unzip =
foldr (\ (x, y) ~ (xs, ys) -> (x : xs, y : ys)) ([], [])

which in this case is equivalent to

unzip :: [(a, b)] -> ([a], [b])
unzip =
foldr (\ (x, y) xys -> (x : fst xys, y : snd xys)) ([], [])

A ~ in front of a pattern will make it match always (hence
irrefutable). Only if the components of the pattern are demanded,
they will be extracted.

Well-Typed

Introducing lazy patterns

A better definition is

unzip :: [(a, b)] -> ([a], [b])
unzip =
foldr (\ (x, y) ~ (xs, ys) -> (x : xs, y : ys)) ([], [])

which in this case is equivalent to

unzip :: [(a, b)] -> ([a], [b])
unzip =
foldr (\ (x, y) xys -> (x : fst xys, y : snd xys)) ([], [])

A ~ in front of a pattern will make it match always (hence
irrefutable). Only if the components of the pattern are demanded,
they will be extracted.

Well-Typed

Lazy let and where , strict case

The outermost pattern in a let or where is lazy by default:

unzip :: [(a, b)] -> ([a], [b])
unzip [] = ([], [])
unzip ((x, y) : xys) = (x : xs, y : ys)
where
(xs, ys) = unzip xys -- works, bad with !

On the other hand, patterns in a case , lambda or left hand side are
strict:

unzip :: [(a, b)] -> ([a], [b])
unzip [] = ([], [])
unzip ((x, y) : xys) = case unzip xys of
~ (xs, ys) -> (x : xs, y : ys) -- requires ~ , bad without

Well-Typed

Lazy let and where , strict case

The outermost pattern in a let or where is lazy by default:

unzip :: [(a, b)] -> ([a], [b])
unzip [] = ([], [])
unzip ((x, y) : xys) = (x : xs, y : ys)
where
(xs, ys) = unzip xys -- works, bad with !

On the other hand, patterns in a case , lambda or left hand side are
strict:

unzip :: [(a, b)] -> ([a], [b])
unzip [] = ([], [])
unzip ((x, y) : xys) = case unzip xys of
~ (xs, ys) -> (x : xs, y : ys) -- requires ~ , bad without

Well-Typed

Strict data, lazy functions

Some advice:

▶ Don’t worry about strictness too much or too early.
▶ Do not just assume that making things stricter is always positive –

understanding evaluation is the key, laziness in some places is as
desirable as strictness is in others.

▶ Do not spread strictness annotations (bang patterns, seq) over
a large amount of functions.

▶ Try to make certain pieces of data strict, either by using strict
fields or by establishing strictness invariants in a small interface.

▶ Other functions using the interface will then automatically
maintain the strictness invariants.

▶ Never forget that seq , bang patterns and strict fields only force
WHNF.

Well-Typed

Normal form

When WHNF is not enough . . .

▶ For structured types, WHNF and NF are not the same.
▶ Sometimes – in particular in the context of parallel programming

– we want data to be evaluated completely.
▶ Unlike seq , this functionality is not built into the language, but

rather provided by a library Control.DeepSeq in the deepseq
package.

Well-Typed

Control.DeepSeq library

class NFData a where
rnf :: a -> ()
rnf x = x `seq` () -- suitable default for flat types

deepseq :: NFData a => a -> b -> b
deepseq x y = rnf x `seq` y

($!!) :: NFData a => (a -> b) -> a -> b
f $!! x = x `deepseq` f x

force :: NFData a => a -> a
force x = x `deepseq` x

Note that what doesn’t make sense for WHNF (a function like force)
does make some sense for NF.

Well-Typed

Control.DeepSeq library

class NFData a where
rnf :: a -> ()
rnf x = x `seq` () -- suitable default for flat types

deepseq :: NFData a => a -> b -> b
deepseq x y = rnf x `seq` y

($!!) :: NFData a => (a -> b) -> a -> b
f $!! x = x `deepseq` f x

force :: NFData a => a -> a
force x = x `deepseq` x

Note that what doesn’t make sense for WHNF (a function like force)
does make some sense for NF.

Well-Typed

Defining NFData instances

Example instance:

instance NFData a => NFData [a] where
rnf [] = ()
rnf (x : xs) = rnf x `seq` rnf xs

Note:

▶ The definition traverses the entire list before returning () .

▶ The call rnf x requires that the element type is an instance of
NFData , too.

▶ We use seq in the second case to ensure that rnf x actually

completes and produces the () .

▶ Calling deepseq has a cost. Don’t force large structures
unnecessarily often.

▶ Control.DeepSeq exports many basic instances.

Well-Typed

Thought experiments

▶ Including partially defined values, how many different elements of
type (Bool, Bool) are there?

▶ And how many lists of type [()] and length at most 2 ?
▶ Can you write programs to distinguish all of these?

Well-Typed

Lessons

▶ Both laziness and strictness can be desirable in certain situations.
▶ In Haskell, you are lazy by default, and have different options to

make things more strict, selectively.
▶ Flat data often “wants” to be strict. For structured data, laziness is

often desirable.
▶ Do not worry about strictness too early.
▶ Try to establish simple invariants on top of your datatypes – do

not use seq or bang patterns in “random” places throughout
your code.

▶ Use GHC’s runtime statistics or profiling in order to pinpoint how
much space is used and where time is spent.

Well-Typed

