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Goals

▶ Streaming in the presence of effects
▶ Safe resource management
▶ Some tools for measuring (space and time) performance
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Example: Listing all files



Recursively exploring a file system

Let’s try to write a Haskell program that – given an initial directory –
lists all files underneath that directory (including files in subdirectories).
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A first attempt

allFilesRecursively :: FilePath -> IO [FilePath]
allFilesRecursively dir = do
xs <- getDirectoryContents dir
ys <- forM xs $ \ x -> do
if "." `isPrefixOf` x
then return [] -- hidden file
else do
let f = dir </> x
b <- doesDirectoryExist f
if b
then allFilesRecursively f
else return [f]

return (concat ys)
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Using the function

main :: IO ()
main = do
[dir] <- getArgs -- partial pattern match
files <- allFilesRecursively dir
mapM_ putStrLn files
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Testing the program

▶ The program seems to work correctly on small directories.
▶ The program is slow and consumes a lot of memory on

medium-sized directories.
▶ The program seems to consume lots of memory and hang for a

long time on large directories.
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RTS info

We can obtain various run-time info on a Haskell program by passing
the +RTS -s run-time system flag:

$ allFiles . +RTS -s
...

165,800 bytes allocated in the heap
3,408 bytes copied during GC

44,504 bytes maximum residency (1 sample(s))
25,128 bytes maximum slop

2 MB total memory in use (0 MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause
Gen 0 0 colls, 0 par 0.000s 0.000s 0.0000s 0.0000s
Gen 1 1 colls, 0 par 0.000s 0.000s 0.0000s 0.0000s

INIT time 0.000s ( 0.000s elapsed)
MUT time 0.001s ( 0.001s elapsed)
GC time 0.000s ( 0.000s elapsed)
EXIT time 0.000s ( 0.000s elapsed)
Total time 0.001s ( 0.001s elapsed)

%GC time 0.0% (0.0% elapsed)

Alloc rate 265,577,872 bytes per MUT second

Productivity 81.5% of total user, 82.1% of total elapsed
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RTS info (contd.)

Or in more compact form with +RTS -t:

$ allFiles . +RTS -t
...
<<ghc: 165800 bytes, 1 GCs, 44504/44504 avg/max bytes
residency (1 samples), 2M in use, 0.000 INIT (0.000
elapsed), 0.001 MUT (0.001 elapsed), 0.000 GC (0.000
elapsed) :ghc>>

Important information:

▶ 44504 bytes max residency indicates the maximum amount of
heap space used

▶ 0.001 MUT indicates the time in seconds spent in themutator
(i.e., doing useful work).

▶ 0.000 GC indicates time spent in garbage collection.
▶ Both CPU time and actual (elapsed) time are given.
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RTS info (contd.)

On a larger directory:

$ allFiles ~/repos +RTS -s
...
<<ghc: 4354373912 bytes, 4198 GCs, 141265981/824306536
avg/max bytes residency (12 samples), 1624M in use,
0.000 INIT (0.000 elapsed), 4.860 MUT (8.020 elapsed),
2.476 GC (2.480 elapsed) :ghc>>

Observations:

▶ No output is printed for the first few seconds.
▶ 824 megabytes maximum residency!
▶ More than a third of total time spent in garbage collection.
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Lists and effects

allFilesRecursively :: FilePath -> IO [FilePath]

When does the list become available?

▶ After all the effects have been performed.
▶ In particular, producing the list and performing the effects to

produce the list is not interleaved.
▶ As a consequence, the whole list is built up in memory and

printing only starts once the list is complete.
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Code smells

In many monads (in particular IO ), functions such as the following
are problematic:

mapM :: Monad m => (a -> m b) -> [a] -> m [b]
filterM :: Monad m => (a -> m Bool) -> [a] -> m [a]
replicateM :: Monad m => Int -> m a -> m [a]
sequence :: Monad m => [m a] -> m [a]
...

All of these produce a list wrapped in an effect type, and bear the risk
of allocating a large structure in memory.
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Composing traversals

According to the functor laws, we have

(map f . map g) xs = map (f . g) xs

In Haskell, due to lazy evaluation, even without optimisations, both
versions are of comparable efficiency.
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Evaluating the lhs on a non-empty list

(map f . map g) (x : xs)

=

map f (map g (x : xs))

=

map f (g x : map g xs)

=

f (g x) : map f (map g xs)
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Evaluating the rhs on a non-empty list

map (f . g) (x : xs)

=

(f . g) x : map (f . g) xs

=

f (g x) : map (f . g) xs

Well-Typed



Composing effectful traversals

There is a similar law for mapM :

(mapM f >=> mapM g) xs = mapM (f >=> g) xs

However, here the right hand side is in many cases dramatically more
efficient than the left hand side.

(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c
(>=>) g f a = g a >>= f
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Consider Maybe

If f :: a -> Maybe b and xs :: [a] , then

mapM f xs :: Maybe [b]

▶ The result is Nothing if f applied to any element of xs

yields Nothing .
▶ Therefore, we cannot even determine the top-level constructor of

the result without inspecting the entire original list.
▶ Thus, in the successful case, we have to build the entire result list

in memory before we can return.
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Consider IO

If f :: a -> IO b and xs :: [a] , then

mapM f xs :: IO [b]

▶ We expect all effects of f applied to any element of xs to be
performed before we look at the result.

▶ In particular, if any of the f calls yields an exception, we would
excpect it to be triggered before we go on.

▶ Therefore, we once again have to build the entire result list in
memory before we can return.
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Consider Identity

If f :: a -> Identity b and xs :: [a] , then

mapM f xs :: Identity [b]

▶ The type Identity a is isomorphic to a .

▶ The function mapM on the Identity monad behaves exactly
as the normal map .

▶ As a consequence, mapM f xs in this case still allows to
incrementally consume the result.
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Revisiting the law

(mapM f >=> mapM g) xs = mapM (f >=> g) xs

In most cases, the left hand side will build a full intermediate structure,
whereas the right hand side will not.

This is unfortunate, because we like to be able to write programs in a
compositional style.
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Towards effectful streams



A non-solution to the original problem

allFilesRecursively ::
FilePath -> IO ()

allFilesRecursively dir = do
xs <- getDirectoryContents dir
forM_ xs $ \ x -> do
if "." `isPrefixOf` x
then return ()
else do
let f = dir </> x
b <- doesDirectoryExist f
if b
then allFilesRecursively f
else putStrLn f

We integrate the printing into the code.
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This is better yet non-compositional

main :: IO ()
main = do
[dir] <- getArgs
allFilesRecursively dir

$ allFiles ~/repos +RTS -s
...
<<ghc: 3893436296 bytes, 3754 GCs, 1961138/17698152
avg/max bytes residency (65 samples), 36M in use, 0.000
INIT (0.000 elapsed), 3.145 MUT (5.698 elapsed), 0.295 GC
(0.295 elapsed) :ghc>>

Much improved maximum residency and GC time.
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Abstracting from the continuation

allFilesRecursively ::
FilePath -> IO ()

allFilesRecursively dir = do
xs <- getDirectoryContents dir
forM_ xs $ \ x -> do
if "." `isPrefixOf` x
then return ()
else do
let f = dir </> x
b <- doesDirectoryExist f
if b
then allFilesRecursively f
else putStrLn f
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Abstracting from the continuation

allFilesRecursively ::
FilePath -> (FilePath -> IO ()) -> IO ()

allFilesRecursively dir yield = do
xs <- getDirectoryContents dir
forM_ xs $ \ x -> do
if "." `isPrefixOf` x
then return ()
else do
let f = dir </> x
b <- doesDirectoryExist f
if b
then allFilesRecursively f yield
else yield f
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Abstracting from the continuation (contd.)

main :: IO ()
main = do
[dir] <- getArgs
allFilesRecursively dir putStrLn

▶ Restores most of the compositionality.
▶ Manually abstracting from the continuation is tedious,

error-prone and easy to forget.
▶ Can we capture this idea more generally?
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The desired functionality

We want a way to define an incremental computation in a monadic
way such that

▶ we can lift operations from an underlying monad (e.g. IO ) and
perform them at any point in time,

▶ we can yield individual result elements at any point in time.
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A functor for streams

data StreamF b m r =
Lift (m r)

| Yield b r
deriving (Functor)

Recall Free :

data Free f a =
Return a

| Wrap (f (Free f a))

type Stream b m = Free (StreamF b m)

We thus have a monad instance for Stream .
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Wrappers

yield :: b -> Stream b m ()
yield b = Wrap (Yield b (Return ()))

lift :: Functor m => m a -> Stream b m a
lift m = Wrap (Lift (fmap Return m))

(We cannot make Stream b an instance of MonadTrans in this
form because partial application of type synonyms is not possible in
Haskell. Even if it was, Stream b would not strictly follow the
MonadTrans laws – although this would not be such a big issue here.)
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Building a stream from a list

each :: Monad m => [b] -> Stream b m ()
each [] = return ()
each (x : xs) = yield x >> each xs
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Mapping over a stream

map :: Monad m =>
(b -> c) -> Stream b m a -> Stream c m a

map _ (Return x) = return x
map f (Wrap (Lift m)) =
Wrap (Lift (fmap (map f) m))

map f (Wrap (Yield b k)) =
Wrap (Yield (f b) (map f k))

Well-Typed



Monadically mapping over a stream

mapM :: Monad m =>
(b -> m c) -> Stream b m a -> Stream c m a

mapM _ (Return x) = return x
mapM f (Wrap (Lift m)) =
Wrap (Lift (fmap (mapM f) m))

mapM f (Wrap (Yield b k)) = do
c <- lift (f b)
yield c
mapM f k
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Producing a stream for every element of a stream

for :: Monad m =>
Stream b m a -> (b -> Stream c m r)

-> Stream c m a
for (Return a) _ = return a
for (Wrap (Lift m)) f =
Wrap (Lift (fmap (flip for f) m))

for (Wrap (Yield b k)) f = do
f b
for k f
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Taking the first few elements from a stream

take :: Monad m =>
Int -> Stream b m a -> Stream b m ()

take n s
| n <= 0 = return ()
| otherwise =
case s of
Return _ -> return ()
Wrap (Lift m) ->
Wrap (Lift (fmap (take n) m))

Wrap (Yield b k) -> do
yield b
take (n - 1) k
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Back from a stream to a list

toList :: Monad m => Stream b m () -> m [b]
toList (Return ()) = return []
toList (Wrap (Lift m)) = m >>= toList
toList (Wrap (Yield b k)) = do
bs <- toList k
return (b : bs)

This function suffers from the same problem as the original monadic
list functions and will usually not provide the result list incrementally.
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Collecting all effects in a stream

effects :: Monad m => Stream b m a -> m a
effects (Return x) = return x
effects (Wrap (Lift m)) = m >>= effects
effects (Wrap (Yield _ k)) = effects k
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Printing a stream line by line

stdoutLn :: Stream String IO a -> IO a
stdoutLn = effects . mapM putStrLn

Note that this is using the stream version of mapM .
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Original example using streams

Directory contents, as a stream:

directoryContents ::
FilePath -> Stream FilePath IO ()

directoryContents dir =
lift (getDirectoryContents dir) >>= each

Note that the files from an individual directory are still not produced
incrementally, because

getDirectoryContents :: FilePath -> IO [FilePath]

does not deliver them that way.
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Original example using streams (contd.)

allFilesRecursively ::
FilePath -> Stream FilePath IO ()

allFilesRecursively dir =
for (directoryContents dir) $ \ x -> do
if "." `isPrefixOf` x
then return ()
else do
let f = dir </> x
b <- lift (doesDirectoryExist f)
if b
then allFilesRecursively f
else yield f
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Original example using streams (contd.)

main :: IO ()
main = do
[dir] <- getArgs
stdoutLn (allFilesRecursively dir)

$ allFiles ~/repos +RTS -s
...
<<ghc: 5221176184 bytes, 5031 GCs, 1309257/15058184
avg/max bytes residency (117 samples), 39M in use, 0.000
INIT (0.000 elapsed), 3.900 MUT (6.226 elapsed), 0.395 GC
(0.394 elapsed) :ghc>>

Comparable to non-compositional or hand-written continuation
versions.
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More compositionality

Stream functions can be composed easily:

main :: IO ()
main = do
[dir, n] <- getArgs
stdoutLn
(take (read n) (allFilesRecursively dir))

This will stop early and not traverse the parts of the directory structure
that are not needed to produce the first n results.
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Using streams with other monads

halve :: Int -> Maybe Int
halve n =
if odd n then Nothing else Just (n `div` 2)

GHCi> toList (take 3
(mapM halve (each [2, 4 . .])))

Just [1, 2, 3]
GHCi> toList (take 3

(mapM halve (each [1 . .])))
Nothing
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As a library



The streaming package

The functionality we just described is offered in very similar form by
the streaming package.

Our type:

data StreamF b m r =
Lift (m r)

| Yield b r
deriving (Functor)

data Free f a =
Return a

| Wrap (f (Free f a))

type Stream b m = Free (StreamF b m)
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Stream type of the streaming package

Their type:

data Stream f m r =
Step !(f (Stream f m r))

| Effect (m (Stream f m r))
| Return r

data Of a b = !a :> b -- a left-strict pair

Apart from the strictness annotations, their Stream (Of a) is

isomorphic to our Stream a .
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The Streaming.Prelude module

The streaming package comes with its own prelude module,
providing replacements for many common list functions and
generalised versions of some of our own stream functions, e.g.:

each :: (Monad m, Foldable f) => f a -> Stream (Of a) m ()
fromHandle :: MonadIO m => Handle -> Stream (Of String) m ()
toHandle :: MonadIO m => Handle -> Stream (Of String) m r -> m r
stdinLn :: MonadIO m => Stream (Of String) m ()
stdoutLn :: MonadIO m => Stream (Of String) m () -> m ()
iterateM :: Monad m => (a -> m a) -> m a -> Stream (Of a) m r
repeatM :: Monad m => m a -> Stream (Of a) m r
mapM :: Monad m => (a -> m b) -> Stream (Of a) m r -> Stream (Of b) m r
filterM :: Monad m =>
(a -> m Bool) -> Stream (Of a) m r -> Stream (Of a) m r

for :: (Monad m, Functor f) =>
Stream (Of a) m r -> (a -> Stream f m x) -> Stream f m r
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More advanced libraries



Producers vs. consumers

Some applications require yet more control:

▶ creating a buffer of a particular size,
▶ applying “back pressure”, i.e., detecting that a consumer has

difficulty keeping up and slowing down,
▶ . . .

To a certain extent, the streaming package allows this by replacing
Of with a different functor – but there are also packages such as
pipes and conduit.
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Extending the interface

In the streaming approach, next to lifting an effect, we have but one
option, to yield a value “downstream”. Yielding a value has no
response.

In both pipes and conduit, each component can communicate both
upstream and downstream:

▶ it can “request” a piece of information upstream, by sending a
message;

▶ it can “respond” a piece of information downstream, receiving a
confirmation.
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The Proxy type

The core type of the pipes package is a Proxy :

data Proxy a' a b' b m r =
Request a' (a -> Proxy a' a b' b m r )

| Respond b (b' -> Proxy a' a b' b m r )
| M (m (Proxy a' a b' b m r))
| Pure r

Request is for upstream communication.

Respond is for downstream communication.

M corresponds to Lift .

Pure corresponds to Return .
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The Proxy type

The core type of the pipes package is a Proxy :

data Proxy a' a b' b m r =
Request a' (a -> Proxy a' a b' b m r )

| Respond b (b' -> Proxy a' a b' b m r )
| M (m (Proxy a' a b' b m r))
| Pure r

The Stream (Of a) type corresponds to

type Producer a = Proxy Void () () a

Indeed, we also have

yield :: Monad m => a -> Producer a m ()
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Producers

type Producer a = Proxy Void () () a

Producers cannot send requests upstream – indicated by Void .

Producers can send a values downstream and receive nothing –
indicated by () – in return.

Well-Typed



Consumers

Another special case:

type Consumer a = Proxy () a () Void

Consumers can request values of type a from upstream by
sending () .

Consumers cannot send anything downstream – indicated by Void .

Where producers yield , consumers

await :: Monad m => Consumer a m a
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Pipes

The generality to send multiple types of requests, or receive multiple
kinds of confirmations, is rarely used:

type Pipe a b = Proxy () a () b

A pipe can receive a items from upstream, and send b items to
downstream.
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Composing proxies

There is a choice between push- and pull-based composition:

▶ we can start running the downstream proxy, and once it requests
a value from upstream, evaluate upstream as far as necessary to
be able to pull;

▶ or we can start running the upstream proxy, and once it responds
a value to downstream, evaluate downstream as far as necessary
to be able to push.

The default is pull-based composition, but the pipes package offers
both if full control is desired.
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Standard composition

The standard composition operator is

(>->) :: Monad m
=> Proxy a' a () b m r
-> Proxy () b c' c m r
-> Proxy a' a c' c m r

The resulting proxy has:

▶ the upstream interface of the first argument,
▶ the downstream interface of the second argument,
▶ the intermediate interface must match.
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Effects

type Effect = Proxy Void () () Void

An effect can neither yield nor await .

It can only produce effects in the underlying monad, and have a final
result.

Only effects can be “run”:

runEffect :: Monad m => Effect m r -> m r
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Examples

stdinLn :: MonadIO m => Producer String m ()
stdoutLn :: MonadIO m => Consumer String m ()

echo :: MonadIO m => m ()
echo = runEffect (stdinLn >-> stdoutLn)

performs an “echo” of each user input.
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Examples (contd.)

map :: Monad m => (a -> b) -> Pipe a b m r

shout :: MonadIO m => m ()
shout = runEffect $
stdinLn >-> map (fmap toUpper) >-> stdoutLn
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Examples (contd.)

take :: Monad m => Int -> Pipe a a m ()

shoutTwice :: MonadIO m => m ()
shoutTwice = runEffect $

stdinLn
>-> map (fmap toUpper)
>-> take 2
>-> stdoutLn
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Examples (contd.)
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shoutTwice :: MonadIO m => m ()
shoutTwice = runEffect $
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>-> map (fmap toUpper)
>-> take 2
>-> stdoutLn
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Examples (contd.)

readLn :: (Read a, MonadIO m) => Producer a m ()
takeWhile :: Monad m => (a -> Bool) -> Pipe a a m ()
sum :: (Num a, Monad m) => Producer a m () -> m a

sumInputs :: MonadIO m => m Int
sumInputs = sum $ readLn >-> takeWhile (/= 0)
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Examples (contd.)

readLn :: (Read a, MonadIO m) => Producer a m ()
takeWhile :: Monad m => (a -> Bool) -> Pipe a a m ()
sum :: (Num a, Monad m) => Producer a m () -> m a

sumInputs :: MonadIO m => m Int
sumInputs = sum $ readLn >-> takeWhile (/= 0)
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The conduit package

Yet another package (ecosystem) based on the same ideas:

ConduitM i o m r Pipe i o m r

Source m o Producer o m ()

Sink i m r Consumer i m r

(.|) (>->)

There are some minor differences, e.g. the conduit type of await can
detect whether the upstream component is finished:

await :: Monad m => Sink i m (Maybe i)
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Summary and comparison

▶ Understanding the Stream type is key to understanding all the
approaches.

▶ For unstanding the Stream type, the most important ingredient
is understanding the it is just an instance of a free monad, and
running streams makes use of the fact that we can inspect the
streams we build this way.
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Summary and comparison (contd.)

▶ The streaming package is the most recent of the discussed
packages, and in a way, the simplest. For many cases, it is enough,
and compellingly easy to use.

▶ The pipes package has a reputation as the theoretically most
elegant. It is immensely powerful, but can also be a bit
intimidating.

▶ The conduit package has gone through many iterations and is
now very similar to pipes. It is currently the most widely used
package in this area.
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