Streaming

Haskell Performance

Andres Loh

14-15 May 2018 — Copyright © 2018 Well-Typed LLP

= Well-Typed

The Haskell Consultants

Goals

» Streaming in the presence of effects
» Safe resource management

» Some tools for measuring (space and time) performance

= Well-Typed

Example: Listing all files

Recursively exploring a file system

Let's try to write a Haskell program that - given an initial directory -
lists all files underneath that directory (including files in subdirectories).

= Well-Typed

A first attempt

allFilesRecursively :: FilePath -> I0 [FilePath]
allFilesRecursively dir = do

xs <- getDirectoryContents dir

ys <- forM xs $ \ x -> do

if "." ‘isPrefixOf" x
then return [] --hidden file
else do

let f = dir </> x
b <- doesDirectoryExist f
if b
then allFilesRecursively f
else return [f]
return (concat ys)

= Well-Typed

Using the function

main :: I0 ()

main = do
[dir] <- getArgs -- partial pattern match
files <- allFilesRecursively dir
mapM_ putStrLn files

= Well-Typed

Testing the program

» The program seems to work correctly on small directories.

» The program is slow and consumes a lot of memory on
medium-sized directories.

» The program seems to consume lots of memory and hang for a
long time on large directories.

= Well-Typed

RTS info

We can obtain various run-time info on a Haskell program by passing
the +RTS -s run-time system flag:

$ allFiles . +RT!

165,800
3,408
44,504
25,128

IN)

Gen @

Gen 1

INIT time
MUT time
GC time
EXIT time
Total time
%GC time
Alloc rate
Productivity

S -s

bytes allocated in the heap

bytes copied during GC

bytes maximum residency (1 sample(s))

bytes maximum slop

MB total memory in use (@ MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause

0 colls, 0 par 0.000s 0.000s 0.0000s 0.0000s
1 colls, 0 par 0.000s 0.000s 0.0000s 0.0000s
0.000s 0.000s elapsed)

(
0.001s (0.001s elapsed)
0.000s (0.000s elapsed)
0.000s (©0.000s elapsed)
0.001s (0.001s elapsed)
0.0% (0.0% elapsed)
265,577,872 bytes per MUT second

81.5% of total user, 82.1% of total elapsed

= Well-Typed

RTS info (contd.)

Or in more compact form with +RTS -t:

$ allFiles . +RTS -t
<<ghc: 165800 bytes, 1 GCs, 44504/44504 avg/max bytes
residency (1 samples), 2M in use, 0.000 INIT (0.000

elapsed), 0.001 MUT (0.001 elapsed), 0.000 GC (0.000
elapsed) :ghc>>

= Well-Typed

RTS info (contd.)

Or in more compact form with +RTS -t:

$ allFiles . +RTS -t

<<ghc: 165800 bytes, 1 GCs, 44504/44504 avg/max bytes
residency (1 samples), 2M in use, 0.000 INIT (0.000

elapsed), 0.001 MUT (0.001 elapsed), 0.000 GC (0.000
elapsed) :ghc>>

Important information:

» 44504 bytes max residency indicates the maximum amount of
heap space used

» 0.001 MUT indicates the time in seconds spent in the mutator
(i.e., doing useful work).

» 0.000 GC indicates time spent in garbage collection.

» Both CPU time and actual (elapsed) time are given.

= Well-Typed

RTS info (contd.

On a larger directory:

$ allFiles ~/repos +RTS -s

<<ghc: 4354373912 bytes, 4198 GCs, 141265981/824306536
avg/max bytes residency (12 samples), 1624M in use,
0.000 INIT (0.000 elapsed), 4.860 MUT (8.020 elapsed),
2.476 GC (2.480 elapsed) :ghc>>

Observations:

» No output is printed for the first few seconds.
» 824 megabytes maximum residency!

» More than a third of total time spent in garbage collection.

= Well-Typed

Lists and effects

allFilesRecursively :: FilePath -> I0 [FilePath]

When does the list become available?

= Well-Typed

Lists and effects

allFilesRecursively :: FilePath -> I0 [FilePath]

When does the list become available?

» After all the effects have been performed.

» In particular, producing the list and performing the effects to
produce the list is not interleaved.

» As a consequence, the whole list is built up in memory and
printing only starts once the list is complete.

= Well-Typed

Code smells

In many monads (in particular I0), functions such as the following
are problematic:

mapM :: Monad m => (a ->m b) -> [a] -> m [b]
filterM :: Monad m => (a -> m Bool) -> [a] -> m [a]
replicateM :: Monad m => Int -> m a -> m [a]

sequence :: Monad m => [m a] -> m [a]

= Well-Typed

Code smells

In many monads (in particular I0), functions such as the following
are problematic:

mapM :: Monad m => (a ->m b) -> [a] -> m [b]
filterM :: Monad m => (a -> m Bool) -> [a] -> m [a]
replicateM :: Monad m => Int -> m a -> m [a]

sequence :: Monad m => [m a] -> m [a]

All of these produce a list wrapped in an effect type, and bear the risk
of allocating a large structure in memory.

= Well-Typed

Composing traversals

According to the functor laws, we have

(map f . map g) xs = map (f . g) xs

= Well-Typed

Composing traversals

According to the functor laws, we have

(map f . map g) xs = map (f . g) xs

In Haskell, due to lazy evaluation, even without optimisations, both
versions are of comparable efficiency.

= Well-Typed

Evaluating the lhs on a non-empty list

(map f . map g) (x : xs)
map f (map g (x : Xs))
map f (g x : map g xs)

f (g x) : map f (map g xs)

= Well-Typed

Evaluating the rhs on a non-empty list

map (f . g) (x : xs)
(f . g)x :map (f . g) xs

f (g x) :map (f . g) xs

= Well-Typed

Composing effectful traversals

There is a similar law for mapM :
(mapM f >=> mapM g) xs = mapM (f >=> g) xs

However, here the right hand side is in many cases dramatically more
efficient than the left hand side.

= Well-Typed

Composing effectful traversals

There is a similar law for mapM :
(mapM f >=> mapM g) xs = mapM (f >=> g) xs

However, here the right hand side is in many cases dramatically more
efficient than the left hand side.

(>=>) :: Monadm=>(Ca->mb) >(b->mc) >a->mc
(C=>)gfa=ga>»>="f

= Well-Typed

Consider

If f :: a->Maybe b and xs :: [a] ,then

mapM f xs :: Maybe [b]

» Theresultis Nothing if f appliedto any elementof xs
yields Nothing .

» Therefore, we cannot even determine the top-level constructor of
the result without inspecting the entire original list.

» Thus, in the successful case, we have to build the entire result list
in memory before we can return.

= Well-Typed

Consider (g}

If f :: a->I0b and xs :: [a] ,then

mapM f xs :: I0 [b]

» We expect all effects of f applied to any element of xs to be
performed before we look at the result.

» In particular, if any of the f calls yields an exception, we would
excpect it to be triggered before we go on.

» Therefore, we once again have to build the entire result list in
memory before we can return.

= Well-Typed

@laN[e[ld I dentity

If f :: a -> Identity b and xs :: [a] ,then

mapM f xs :: Identity [b]

» The type Identity a isisomorphicto a .

» The function mapM onthe Identity monad behaves exactly
as the normal map .

» As aconsequence, mapM f xs in this case still allows to
incrementally consume the result.

= Well-Typed

Revisiting the law

(mapM f >=> mapM g) xs = mapM (f >=> g) xs

In most cases, the left hand side will build a full intermediate structure,
whereas the right hand side will not.

= Well-Typed

Revisiting the law

(mapM f >=> mapM g) xs = mapM (f >=> g) xs

In most cases, the left hand side will build a full intermediate structure,
whereas the right hand side will not.

This is unfortunate, because we like to be able to write programs in a

compositional style.

= Well-Typed

Towards effectful streams

A non-solution to the original problem

allFilesRecursively ::
FilePath -> 10 ()
allFilesRecursively dir = do
xs <- getDirectoryContents dir
forM_ xs $ \ x -> do
if "." “isPrefixOf" x
then return ()
else do
let f = dir </> x
b <- doesDirectoryExist f
if b
then allFilesRecursively f
else putStrLn f

We integrate the printing into the code.

= Well-Typed

This is better yet non-compositional

main :: I0 ()

main = do
[dir] <- getArgs
allFilesRecursively dir

$ allFiles ~/repos +RTS -s

<<ghc: 3893436296 bytes, 3754 GCs, 1961138/17698152
avg/max bytes residency (65 samples), 36M in use, 0.000
INIT (0.000 elapsed), 3.145 MUT (5.698 elapsed), 0.295 GC

(0.295 elapsed) :ghc>>

Much improved maximum residency and GC time.

= Well-Typed

Abstracting from the continuation

allFilesRecursively ::
FilePath -> 10 ()
allFilesRecursively dir = do
xs <- getDirectoryContents dir
forM_ xs $ \ x —> do
if "." “isPrefixOf" x
then return ()
else do
let f = dir </> x
b <- doesDirectoryExist f
if b
then allFilesRecursively f
else putStrLn f

= Well-Typed

Abstracting from the continuation

allFilesRecursively ::
FilePath ->|[(FilePath -> I0 ())|-> IO ()
allFilesRecursively dirlyie1d|: do
xs <- getDirectoryContents dir
forM_ xs $ \ x —> do
if "." “isPrefixOf"* x
then return ()
else do
let f = dir </> x
b <- doesDirectoryExist f

if b
then allFilesRecursively f
else f

= Well-Typed

Abstracting from the continuation (contd.)

main :: I0 ()

main = do
[dir] <- getArgs
allFilesRecursively dir putStrlLn

» Restores most of the compositionality.

» Manually abstracting from the continuation is tedious,
error-prone and easy to forget.

» Can we capture this idea more generally?

= Well-Typed

The desired functionality

We want a way to define an incremental computation in a monadic
way such that

» we can lift operations from an underlying monad (e.g. I0)and
perform them at any point in time,

» we can yield individual result elements at any point in time.

= Well-Typed

A functor for streams

data StreamF b m r =
Lift (mr)
| Yield b r
deriving (Functor)

= Well-Typed

A functor for streams

data StreamF b m r =
Lift (mr)
| Yield b r
deriving (Functor)

Recall Free

data Free f a =
Return a
| Wrap (f (Free f a))

type Stream b m = Free (StreamF b m)

= Well-Typed

A functor for streams

data StreamF b m r =
Lift (mr)
| Yield b r
deriving (Functor)

Recall Free

data Free f a =
Return a
| Wrap (f (Free f a))

type Stream b m = Free (StreamF b m)

We thus have a monad instance for Stream

= Well-Typed

yield :: b -> Stream b m ()
yield b = Wrap (Yield b (Return ()))

= Well-Typed

yield :: b -> Stream b m ()
yield b = Wrap (Yield b (Return ()))

1lift :: Functor m => m a -> Stream b m a
lift m = Wrap (Lift (fmap Return m))

= Well-Typed

yield :: b -> Stream b m ()
yield b = Wrap (Yield b (Return ()))

1lift :: Functor m => m a -> Stream b m a
lift m = Wrap (Lift (fmap Return m))

(We cannot make Stream b an instance of MonadTrans in this
form because partial application of type synonyms is not possible in
Haskell. Even if it was, Stream b would not strictly follow the
MonadTrans laws - although this would not be such a big issue here.)

= Well-Typed

Building a stream from a list

each :: Monad m => [b] -> Stream b m ()

each [] = return ()
each (x : xs) = yield x >> each xs

= Well-Typed

Mapping over a stream

map :: Monad m =>
(b ->c¢c) -> Stream b m a -> Stream c m a
map _ (Return x) = return x

map f (Wrap (Lift m)) =
Wrap (Lift (fmap (map f) m))

map f (Wrap (Yield b k)) =
Wrap (Yield (f b) (map f k))

= Well-Typed

Monadically mapping over a stream

mapM :: Monad m =>
(b =>mc) -> Stream b m a -> Stream c m a
mapM _ (Return x) = return x
mapM f (Wrap (Lift m)) =
Wrap (Lift (fmap (mapM f) m))
mapM f (Wrap (Yield b k)) = do
c <= lift (f b)
yield ¢
mapM f k

= Well-Typed

Producing a stream for every element of a stream

for :: Monad m =>
Stream b ma -> (b -> Stream c m r)
-> Stream c m a
for (Return a) _
for (Wrap (Lift m)) f =
Wrap (Lift (fmap (flip for f) m))
for (Wrap (Yield b k)) f = do
f b
for k f

return a

= Well-Typed

Taking the first few elements from a stream

take :: Monad m =>
Int -> Stream b m a -> Stream b m ()
take n s
| n<=20 = return ()
| otherwise =
case s of
Return _ -> return ()
Wrap (Lift m) =

Wrap (Lift (fmap (take n) m))
Wrap (Yield b k) -> do

yield b

take (n - 1) k

= Well-Typed

Back from a stream to a list

toList :: Monad m => Stream b m () -> m [b]

toList (Return ()) = return []
toList (Wrap (Lift m)) = m >>= tolList
toList (Wrap (Yield b k)) = do

bs <- tolList k
return (b : bs)

This function suffers from the same problem as the original monadic
list functions and will usually not provide the result list incrementally.

= Well-Typed

Collecting all effects in a stream

effects :: Monad m => Stream b ma ->m a
effects (Return x) = return x
effects (Wrap (Lift m)) m >>= effects
effects (Wrap (Yield _ k)) = effects k

= Well-Typed

Printing a stream line by line

stdoutLn :: Stream String I0 a -> I0 a
stdoutlLn = effects . mapM putStrLn

Note that this is using the stream version of mapM .

= Well-Typed

Original example using streams

Directory contents, as a stream:

directoryContents ::

FilePath -> Stream FilePath I0 ()
directoryContents dir =

lift (getDirectoryContents dir) >>= each

= Well-Typed

Original example using streams

Directory contents, as a stream:

directoryContents ::

FilePath -> Stream FilePath I0 ()
directoryContents dir =

lift (getDirectoryContents dir) >>= each

Note that the files from an individual directory are still not produced
incrementally, because

getDirectoryContents :: FilePath -> I0 [FilePath]

does not deliver them that way.

= Well-Typed

Original example using streams (contd.)

allFilesRecursively ::
FilePath -> Stream FilePath IO ()
allFilesRecursively dir =
for (directoryContents dir) $ \ x -> do
if "." “isPrefixOf* x
then return ()
else do
let f = dir </> x
b <- 1ift (doesDirectoryExist f)
if b
then allFilesRecursively f
else yield f

= Well-Typed

Original example using streams (contd.)

main :: I0 ()
main = do
[dir] <- getArgs
stdoutlLn (allFilesRecursively dir)

$ allFiles ~/repos +RTS -s

<<ghc: 5221176184 bytes, 5031 GCs, 1309257/15058184
avg/max bytes residency (117 samples), 39M in use, 0.000
INIT (0.000 elapsed), 3.900 MUT (6.226 elapsed), 0.395 GC
(0.394 elapsed) :ghc>>

Comparable to non-compositional or hand-written continuation
versions.

= Well-Typed

More compositionality

Stream functions can be composed easily:

main :: I0 ()
main = do
[dir, n] <- getArgs
stdoutLn
(take (read n) (allFilesRecursively dir))

This will stop early and not traverse the parts of the directory structure
that are not needed to produce the first n results.

= Well-Typed

Using streams with other monads

halve :: Int -> Maybe Int
halve n =
if odd n then Nothing else Just (n ‘div' 2)

GHCi> tolList (take 3

(mapM halve (each [2, 4..1)))
Just [1, 2, 3]
GHCi> tolist (take 3

(mapM halve (each [1..1)))
Nothing

= Well-Typed

As a library

The streaming package

The functionality we just described is offered in very similar form by
the streaming package.

Our type:

data StreamF b m r =
Lift (mr)
| Yield b r
deriving (Functor)
data Free f a =
Return a
| Wrap (f (Free f a))

type Stream b m = Free (StreamF b m)

= Well-Typed

Stream type of the streaming package

Their type:

data Stream f mr =
Step ' (f (Stream f m r))
| Effect (m (Stream f m r))
| Return r

data Of a b = !a :> b - aleft-strict pair

Apart from the strictness annotations, their Stream (Of a) is
isomorphic to our Stream a .

= Well-Typed

Streaming.Prelude Haglele[S1[E

The streaming package comes with its own prelude module,
providing replacements for many common list functions and
generalised versions of some of our own stream functions, e.g.:

each :: (Monad m, Foldable f) => f a -> Stream (O0f a) m ()
fromHandle :: MonadIO m => Handle -> Stream (Of String) m ()
toHandle :: MonadIO m => Handle -> Stream (Of String) mr ->m r
stdinLn :: MonadIO m => Stream (Of String) m ()
stdoutlLn :: MonadIO m => Stream (Of String) m () ->m ()
iterateM :: Monad m=> (a ->ma) ->ma -> Stream (0f a) mr
repeatM :: Monad m =>m a -> Stream (Of a) m r
mapM :: Monad m => (a -> m b) -> Stream (Of a) m r -> Stream (Of b) m r
filterM :: Monad m =>

(a -> m Bool) -> Stream (Of a) m r -> Stream (Of a) m r
for :: (Monad m, Functor f) =>

Stream (Of @) mr -> (a -> Stream f m x) -> Stream f m r

= Well-Typed

More advanced libraries

Producers vs. consumers

Some applications require yet more control:

» creating a buffer of a particular size,

» applying “back pressure”, i.e., detecting that a consumer has
difficulty keeping up and slowing down,

> ...

To a certain extent, the streaming package allows this by replacing
Of with a different functor - but there are also packages such as
pipes and conduit.

= Well-Typed

Extending the interface

In the streaming approach, next to lifting an effect, we have but one
option, to yield avalue “downstream”. Yielding a value has no
response.

= Well-Typed

Extending the interface

In the streaming approach, next to lifting an effect, we have but one
option, to yield avalue “downstream”. Yielding a value has no
response.

In both pipes and conduit, each component can communicate both
upstream and downstream:

» it can “request” a piece of information upstream, by sending a
message;

» it can “respond” a piece of information downstream, receiving a
confirmation.

= Well-Typed

The type

The core type of the pipes package isa Proxy :

data Proxy a' ab' bmr =
Request a' (@ -> Proxy a' ab'bmr)
| Respond b (b' -> Proxy a' ab'bmr)
| M (m (Proxy a' ab'" bmr))
| Pure r
Request is for upstream communication.
Respond is for downstream communication

M correspondsto Lift .

Pure correspondsto Return .

= Well-Typed

The type

The core type of the pipes package isa Proxy :

data Proxy a' ab' bmr =
Request a' (@ -> Proxy a' ab'bmr)
| Respond b (b' -> Proxy a' ab'bmr)
| M (m (Proxy a' ab'" bmr))
| Pure r

The Stream (Of a) type corresponds to
type Producer a = Proxy Void () () a

Indeed, we also have

yield :: Monad m => a -> Producer a m ()

= Well-Typed

Producers

type Producer a = Proxy Void () () a

Producers cannot send requests upstream - indicated by Void .

Producers can send a values downstream and receive nothing -
indicated by () -inreturn.

= Well-Typed

Consumers

Another special case:

type Consumer a = Proxy () a () Void

Consumers can request values of type a from upstream by
sending () .

Consumers cannot send anything downstream - indicated by Void .

= Well-Typed

Consumers

Another special case:

type Consumer a = Proxy () a () Void

Consumers can request values of type a from upstream by
sending () .

Consumers cannot send anything downstream - indicated by Void .

Where producers yield , consumers

await :: Monad m => Consumer a m a

= Well-Typed

The generality to send multiple types of requests, or receive multiple
kinds of confirmations, is rarely used:

type Pipe a b = Proxy () a () b

A pipe can receive a items from upstream, and send b items to
downstream.

= Well-Typed

Composing proxies

There is a choice between push- and pull-based composition:

» we can start running the downstream proxy, and once it requests
a value from upstream, evaluate upstream as far as necessary to
be able to pull;

» or we can start running the upstream proxy, and once it responds
a value to downstream, evaluate downstream as far as necessary
to be able to push.

The default is pull-based composition, but the pipes package offers
both if full control is desired.

= Well-Typed

Standard composition

The standard composition operator is

(>->) :: Monad m
=>Proxy a'a () bmr
->Proxy O bc' cmr
-> Proxy a'ac'cmr

The resulting proxy has:

» the upstream interface of the first argument,
» the downstream interface of the second argument,

» the intermediate interface must match.

= Well-Typed

type Effect = Proxy Void () () Void

An effect can neither yield nor await .

It can only produce effects in the underlying monad, and have a final
result.

= Well-Typed

type Effect = Proxy Void () () Void

An effect can neither yield nor await .

It can only produce effects in the underlying monad, and have a final
result.

Only effects can be “run™:

runEffect :: Monad m => Effect mr ->m r

= Well-Typed

stdinLn :: MonadIO m => Producer String m ()
stdoutlLn :: MonadIO m => Consumer String m ()

= Well-Typed

stdinLn :: MonadIO m => Producer String m ()
stdoutlLn :: MonadIO m => Consumer String m ()

echo :: MonadIO m =>m ()
echo = runkEffect (stdinLn >-> stdoutLn)

performs an “echo” of each user input.

= Well-Typed

Examples (contd.)

map :: Monad m => (a -> b) -> Pipe a b mr

= Well-Typed

Examples (contd.)

map :: Monad m => (a -> b) -> Pipe a b mr

shout :: MonadIOm =>m ()
shout = runkffect $
stdinLn >-> map (fmap toUpper) >-> stdoutlLn

= Well-Typed

Examples (contd.)

take :: Monad m => Int -> Pipe a am ()

= Well-Typed

Examples (contd.)

take :: Monad m => Int -> Pipe a am ()

shoutTwice :: MonadIO m =>m ()
shoutTwice = runEffect $
stdinlLn
>-> map (fmap toUpper)
>-> take 2
>-> stdoutlLn

= Well-Typed

Examples (contd.)

readLn :: (Read a, MonadIO m) => Producer a m ()
takeWhile :: Monad m => (a -> Bool) -> Pipe a a m ()
sum :: (Num a, Monad m) => Producer am () ->m a

= Well-Typed

Examples (contd.)

readLn :: (Read a, MonadIO m) => Producer a m ()
takeWhile :: Monad m => (a -> Bool) -> Pipe a a m ()
sum :: (Num a, Monad m) => Producer am () ->m a

sumInputs :: MonadIO m => m Int
sumInputs = sum $ readlLn >-> takeWhile (/= 0)

= Well-Typed

The conduit package

Yet another package (ecosystem) based on the same ideas:

ConduitM i om r Pipe i omr
Source m o Producer o m ()
Sink i mr Consumer i m r
D >->)

There are some minor differences, e.g. the conduit type of await can
detect whether the upstream component is finished:

await :: Monad m => Sink i m (Maybe i)

= Well-Typed

Summary and comparison

» Understanding the Stream type is key to understanding all the
approaches.

» For unstanding the Stream type, the mostimportant ingredient
is understanding the it is just an instance of a free monad, and
running streams makes use of the fact that we can inspect the
streams we build this way.

= Well-Typed

Summary and comparison (contd.)

» The streaming package is the most recent of the discussed
packages, and in a way, the simplest. For many cases, it is enough,
and compellingly easy to use.

» The pipes package has a reputation as the theoretically most
elegant. It is immensely powerful, but can also be a bit
intimidating.

» The conduit package has gone through many iterations and is

now very similar to pipes. Itis currently the most widely used
package in this area.

= Well-Typed

