
Streaming
Haskell Performance

Andres Löh

14–15 May 2018 — Copyright © 2018 Well-Typed LLP

Well-Typed
The Haskell Consultants

Goals

▶ Streaming in the presence of effects
▶ Safe resource management
▶ Some tools for measuring (space and time) performance

Well-Typed

Example: Listing all files

Recursively exploring a file system

Let’s try to write a Haskell program that – given an initial directory –
lists all files underneath that directory (including files in subdirectories).

Well-Typed

A first attempt

allFilesRecursively :: FilePath -> IO [FilePath]
allFilesRecursively dir = do
xs <- getDirectoryContents dir
ys <- forM xs $ \ x -> do
if "." `isPrefixOf` x
then return [] -- hidden file
else do
let f = dir </> x
b <- doesDirectoryExist f
if b
then allFilesRecursively f
else return [f]

return (concat ys)

Well-Typed

Using the function

main :: IO ()
main = do
[dir] <- getArgs -- partial pattern match
files <- allFilesRecursively dir
mapM_ putStrLn files

Well-Typed

Testing the program

▶ The program seems to work correctly on small directories.
▶ The program is slow and consumes a lot of memory on

medium-sized directories.
▶ The program seems to consume lots of memory and hang for a

long time on large directories.

Well-Typed

RTS info

We can obtain various run-time info on a Haskell program by passing
the +RTS -s run-time system flag:

$ allFiles . +RTS -s
...

165,800 bytes allocated in the heap
3,408 bytes copied during GC

44,504 bytes maximum residency (1 sample(s))
25,128 bytes maximum slop

2 MB total memory in use (0 MB lost due to fragmentation)

Tot time (elapsed) Avg pause Max pause
Gen 0 0 colls, 0 par 0.000s 0.000s 0.0000s 0.0000s
Gen 1 1 colls, 0 par 0.000s 0.000s 0.0000s 0.0000s

INIT time 0.000s (0.000s elapsed)
MUT time 0.001s (0.001s elapsed)
GC time 0.000s (0.000s elapsed)
EXIT time 0.000s (0.000s elapsed)
Total time 0.001s (0.001s elapsed)

%GC time 0.0% (0.0% elapsed)

Alloc rate 265,577,872 bytes per MUT second

Productivity 81.5% of total user, 82.1% of total elapsed

Well-Typed

RTS info (contd.)

Or in more compact form with +RTS -t:

$ allFiles . +RTS -t
...
<<ghc: 165800 bytes, 1 GCs, 44504/44504 avg/max bytes
residency (1 samples), 2M in use, 0.000 INIT (0.000
elapsed), 0.001 MUT (0.001 elapsed), 0.000 GC (0.000
elapsed) :ghc>>

Important information:

▶ 44504 bytes max residency indicates the maximum amount of
heap space used

▶ 0.001 MUT indicates the time in seconds spent in themutator
(i.e., doing useful work).

▶ 0.000 GC indicates time spent in garbage collection.
▶ Both CPU time and actual (elapsed) time are given.

Well-Typed

RTS info (contd.)

Or in more compact form with +RTS -t:

$ allFiles . +RTS -t
...
<<ghc: 165800 bytes, 1 GCs, 44504/44504 avg/max bytes
residency (1 samples), 2M in use, 0.000 INIT (0.000
elapsed), 0.001 MUT (0.001 elapsed), 0.000 GC (0.000
elapsed) :ghc>>

Important information:

▶ 44504 bytes max residency indicates the maximum amount of
heap space used

▶ 0.001 MUT indicates the time in seconds spent in themutator
(i.e., doing useful work).

▶ 0.000 GC indicates time spent in garbage collection.
▶ Both CPU time and actual (elapsed) time are given.

Well-Typed

RTS info (contd.)

On a larger directory:

$ allFiles ~/repos +RTS -s
...
<<ghc: 4354373912 bytes, 4198 GCs, 141265981/824306536
avg/max bytes residency (12 samples), 1624M in use,
0.000 INIT (0.000 elapsed), 4.860 MUT (8.020 elapsed),
2.476 GC (2.480 elapsed) :ghc>>

Observations:

▶ No output is printed for the first few seconds.
▶ 824 megabytes maximum residency!
▶ More than a third of total time spent in garbage collection.

Well-Typed

Lists and effects

allFilesRecursively :: FilePath -> IO [FilePath]

When does the list become available?

▶ After all the effects have been performed.
▶ In particular, producing the list and performing the effects to

produce the list is not interleaved.
▶ As a consequence, the whole list is built up in memory and

printing only starts once the list is complete.

Well-Typed

Lists and effects

allFilesRecursively :: FilePath -> IO [FilePath]

When does the list become available?

▶ After all the effects have been performed.
▶ In particular, producing the list and performing the effects to

produce the list is not interleaved.
▶ As a consequence, the whole list is built up in memory and

printing only starts once the list is complete.

Well-Typed

Code smells

In many monads (in particular IO), functions such as the following
are problematic:

mapM :: Monad m => (a -> m b) -> [a] -> m [b]
filterM :: Monad m => (a -> m Bool) -> [a] -> m [a]
replicateM :: Monad m => Int -> m a -> m [a]
sequence :: Monad m => [m a] -> m [a]
...

All of these produce a list wrapped in an effect type, and bear the risk
of allocating a large structure in memory.

Well-Typed

Code smells

In many monads (in particular IO), functions such as the following
are problematic:

mapM :: Monad m => (a -> m b) -> [a] -> m [b]
filterM :: Monad m => (a -> m Bool) -> [a] -> m [a]
replicateM :: Monad m => Int -> m a -> m [a]
sequence :: Monad m => [m a] -> m [a]
...

All of these produce a list wrapped in an effect type, and bear the risk
of allocating a large structure in memory.

Well-Typed

Composing traversals

According to the functor laws, we have

(map f . map g) xs = map (f . g) xs

In Haskell, due to lazy evaluation, even without optimisations, both
versions are of comparable efficiency.

Well-Typed

Composing traversals

According to the functor laws, we have

(map f . map g) xs = map (f . g) xs

In Haskell, due to lazy evaluation, even without optimisations, both
versions are of comparable efficiency.

Well-Typed

Evaluating the lhs on a non-empty list

(map f . map g) (x : xs)

=

map f (map g (x : xs))

=

map f (g x : map g xs)

=

f (g x) : map f (map g xs)

Well-Typed

Evaluating the rhs on a non-empty list

map (f . g) (x : xs)

=

(f . g) x : map (f . g) xs

=

f (g x) : map (f . g) xs

Well-Typed

Composing effectful traversals

There is a similar law for mapM :

(mapM f >=> mapM g) xs = mapM (f >=> g) xs

However, here the right hand side is in many cases dramatically more
efficient than the left hand side.

(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c
(>=>) g f a = g a >>= f

Well-Typed

Composing effectful traversals

There is a similar law for mapM :

(mapM f >=> mapM g) xs = mapM (f >=> g) xs

However, here the right hand side is in many cases dramatically more
efficient than the left hand side.

(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c
(>=>) g f a = g a >>= f

Well-Typed

Consider Maybe

If f :: a -> Maybe b and xs :: [a] , then

mapM f xs :: Maybe [b]

▶ The result is Nothing if f applied to any element of xs

yields Nothing .
▶ Therefore, we cannot even determine the top-level constructor of

the result without inspecting the entire original list.
▶ Thus, in the successful case, we have to build the entire result list

in memory before we can return.

Well-Typed

Consider IO

If f :: a -> IO b and xs :: [a] , then

mapM f xs :: IO [b]

▶ We expect all effects of f applied to any element of xs to be
performed before we look at the result.

▶ In particular, if any of the f calls yields an exception, we would
excpect it to be triggered before we go on.

▶ Therefore, we once again have to build the entire result list in
memory before we can return.

Well-Typed

Consider Identity

If f :: a -> Identity b and xs :: [a] , then

mapM f xs :: Identity [b]

▶ The type Identity a is isomorphic to a .

▶ The function mapM on the Identity monad behaves exactly
as the normal map .

▶ As a consequence, mapM f xs in this case still allows to
incrementally consume the result.

Well-Typed

Revisiting the law

(mapM f >=> mapM g) xs = mapM (f >=> g) xs

In most cases, the left hand side will build a full intermediate structure,
whereas the right hand side will not.

This is unfortunate, because we like to be able to write programs in a
compositional style.

Well-Typed

Revisiting the law

(mapM f >=> mapM g) xs = mapM (f >=> g) xs

In most cases, the left hand side will build a full intermediate structure,
whereas the right hand side will not.

This is unfortunate, because we like to be able to write programs in a
compositional style.

Well-Typed

Towards effectful streams

A non-solution to the original problem

allFilesRecursively ::
FilePath -> IO ()

allFilesRecursively dir = do
xs <- getDirectoryContents dir
forM_ xs $ \ x -> do
if "." `isPrefixOf` x
then return ()
else do
let f = dir </> x
b <- doesDirectoryExist f
if b
then allFilesRecursively f
else putStrLn f

We integrate the printing into the code.

Well-Typed

This is better yet non-compositional

main :: IO ()
main = do
[dir] <- getArgs
allFilesRecursively dir

$ allFiles ~/repos +RTS -s
...
<<ghc: 3893436296 bytes, 3754 GCs, 1961138/17698152
avg/max bytes residency (65 samples), 36M in use, 0.000
INIT (0.000 elapsed), 3.145 MUT (5.698 elapsed), 0.295 GC
(0.295 elapsed) :ghc>>

Much improved maximum residency and GC time.

Well-Typed

Abstracting from the continuation

allFilesRecursively ::
FilePath -> IO ()

allFilesRecursively dir = do
xs <- getDirectoryContents dir
forM_ xs $ \ x -> do
if "." `isPrefixOf` x
then return ()
else do
let f = dir </> x
b <- doesDirectoryExist f
if b
then allFilesRecursively f
else putStrLn f

Well-Typed

Abstracting from the continuation

allFilesRecursively ::
FilePath -> (FilePath -> IO ()) -> IO ()

allFilesRecursively dir yield = do
xs <- getDirectoryContents dir
forM_ xs $ \ x -> do
if "." `isPrefixOf` x
then return ()
else do
let f = dir </> x
b <- doesDirectoryExist f
if b
then allFilesRecursively f yield
else yield f

Well-Typed

Abstracting from the continuation (contd.)

main :: IO ()
main = do
[dir] <- getArgs
allFilesRecursively dir putStrLn

▶ Restores most of the compositionality.
▶ Manually abstracting from the continuation is tedious,

error-prone and easy to forget.
▶ Can we capture this idea more generally?

Well-Typed

The desired functionality

We want a way to define an incremental computation in a monadic
way such that

▶ we can lift operations from an underlying monad (e.g. IO) and
perform them at any point in time,

▶ we can yield individual result elements at any point in time.

Well-Typed

A functor for streams

data StreamF b m r =
Lift (m r)

| Yield b r
deriving (Functor)

Recall Free :

data Free f a =
Return a

| Wrap (f (Free f a))

type Stream b m = Free (StreamF b m)

We thus have a monad instance for Stream .

Well-Typed

A functor for streams

data StreamF b m r =
Lift (m r)

| Yield b r
deriving (Functor)

Recall Free :

data Free f a =
Return a

| Wrap (f (Free f a))

type Stream b m = Free (StreamF b m)

We thus have a monad instance for Stream .

Well-Typed

A functor for streams

data StreamF b m r =
Lift (m r)

| Yield b r
deriving (Functor)

Recall Free :

data Free f a =
Return a

| Wrap (f (Free f a))

type Stream b m = Free (StreamF b m)

We thus have a monad instance for Stream .

Well-Typed

Wrappers

yield :: b -> Stream b m ()
yield b = Wrap (Yield b (Return ()))

lift :: Functor m => m a -> Stream b m a
lift m = Wrap (Lift (fmap Return m))

(We cannot make Stream b an instance of MonadTrans in this
form because partial application of type synonyms is not possible in
Haskell. Even if it was, Stream b would not strictly follow the
MonadTrans laws – although this would not be such a big issue here.)

Well-Typed

Wrappers

yield :: b -> Stream b m ()
yield b = Wrap (Yield b (Return ()))

lift :: Functor m => m a -> Stream b m a
lift m = Wrap (Lift (fmap Return m))

(We cannot make Stream b an instance of MonadTrans in this
form because partial application of type synonyms is not possible in
Haskell. Even if it was, Stream b would not strictly follow the
MonadTrans laws – although this would not be such a big issue here.)

Well-Typed

Wrappers

yield :: b -> Stream b m ()
yield b = Wrap (Yield b (Return ()))

lift :: Functor m => m a -> Stream b m a
lift m = Wrap (Lift (fmap Return m))

(We cannot make Stream b an instance of MonadTrans in this
form because partial application of type synonyms is not possible in
Haskell. Even if it was, Stream b would not strictly follow the
MonadTrans laws – although this would not be such a big issue here.)

Well-Typed

Building a stream from a list

each :: Monad m => [b] -> Stream b m ()
each [] = return ()
each (x : xs) = yield x >> each xs

Well-Typed

Mapping over a stream

map :: Monad m =>
(b -> c) -> Stream b m a -> Stream c m a

map _ (Return x) = return x
map f (Wrap (Lift m)) =
Wrap (Lift (fmap (map f) m))

map f (Wrap (Yield b k)) =
Wrap (Yield (f b) (map f k))

Well-Typed

Monadically mapping over a stream

mapM :: Monad m =>
(b -> m c) -> Stream b m a -> Stream c m a

mapM _ (Return x) = return x
mapM f (Wrap (Lift m)) =
Wrap (Lift (fmap (mapM f) m))

mapM f (Wrap (Yield b k)) = do
c <- lift (f b)
yield c
mapM f k

Well-Typed

Producing a stream for every element of a stream

for :: Monad m =>
Stream b m a -> (b -> Stream c m r)

-> Stream c m a
for (Return a) _ = return a
for (Wrap (Lift m)) f =
Wrap (Lift (fmap (flip for f) m))

for (Wrap (Yield b k)) f = do
f b
for k f

Well-Typed

Taking the first few elements from a stream

take :: Monad m =>
Int -> Stream b m a -> Stream b m ()

take n s
| n <= 0 = return ()
| otherwise =
case s of
Return _ -> return ()
Wrap (Lift m) ->
Wrap (Lift (fmap (take n) m))

Wrap (Yield b k) -> do
yield b
take (n - 1) k

Well-Typed

Back from a stream to a list

toList :: Monad m => Stream b m () -> m [b]
toList (Return ()) = return []
toList (Wrap (Lift m)) = m >>= toList
toList (Wrap (Yield b k)) = do
bs <- toList k
return (b : bs)

This function suffers from the same problem as the original monadic
list functions and will usually not provide the result list incrementally.

Well-Typed

Collecting all effects in a stream

effects :: Monad m => Stream b m a -> m a
effects (Return x) = return x
effects (Wrap (Lift m)) = m >>= effects
effects (Wrap (Yield _ k)) = effects k

Well-Typed

Printing a stream line by line

stdoutLn :: Stream String IO a -> IO a
stdoutLn = effects . mapM putStrLn

Note that this is using the stream version of mapM .

Well-Typed

Original example using streams

Directory contents, as a stream:

directoryContents ::
FilePath -> Stream FilePath IO ()

directoryContents dir =
lift (getDirectoryContents dir) >>= each

Note that the files from an individual directory are still not produced
incrementally, because

getDirectoryContents :: FilePath -> IO [FilePath]

does not deliver them that way.

Well-Typed

Original example using streams

Directory contents, as a stream:

directoryContents ::
FilePath -> Stream FilePath IO ()

directoryContents dir =
lift (getDirectoryContents dir) >>= each

Note that the files from an individual directory are still not produced
incrementally, because

getDirectoryContents :: FilePath -> IO [FilePath]

does not deliver them that way.

Well-Typed

Original example using streams (contd.)

allFilesRecursively ::
FilePath -> Stream FilePath IO ()

allFilesRecursively dir =
for (directoryContents dir) $ \ x -> do
if "." `isPrefixOf` x
then return ()
else do
let f = dir </> x
b <- lift (doesDirectoryExist f)
if b
then allFilesRecursively f
else yield f

Well-Typed

Original example using streams (contd.)

main :: IO ()
main = do
[dir] <- getArgs
stdoutLn (allFilesRecursively dir)

$ allFiles ~/repos +RTS -s
...
<<ghc: 5221176184 bytes, 5031 GCs, 1309257/15058184
avg/max bytes residency (117 samples), 39M in use, 0.000
INIT (0.000 elapsed), 3.900 MUT (6.226 elapsed), 0.395 GC
(0.394 elapsed) :ghc>>

Comparable to non-compositional or hand-written continuation
versions.

Well-Typed

More compositionality

Stream functions can be composed easily:

main :: IO ()
main = do
[dir, n] <- getArgs
stdoutLn
(take (read n) (allFilesRecursively dir))

This will stop early and not traverse the parts of the directory structure
that are not needed to produce the first n results.

Well-Typed

Using streams with other monads

halve :: Int -> Maybe Int
halve n =
if odd n then Nothing else Just (n `div` 2)

GHCi> toList (take 3
(mapM halve (each [2, 4 . .])))

Just [1, 2, 3]
GHCi> toList (take 3

(mapM halve (each [1 . .])))
Nothing

Well-Typed

As a library

The streaming package

The functionality we just described is offered in very similar form by
the streaming package.

Our type:

data StreamF b m r =
Lift (m r)

| Yield b r
deriving (Functor)

data Free f a =
Return a

| Wrap (f (Free f a))

type Stream b m = Free (StreamF b m)

Well-Typed

Stream type of the streaming package

Their type:

data Stream f m r =
Step !(f (Stream f m r))

| Effect (m (Stream f m r))
| Return r

data Of a b = !a :> b -- a left-strict pair

Apart from the strictness annotations, their Stream (Of a) is

isomorphic to our Stream a .

Well-Typed

The Streaming.Prelude module

The streaming package comes with its own prelude module,
providing replacements for many common list functions and
generalised versions of some of our own stream functions, e.g.:

each :: (Monad m, Foldable f) => f a -> Stream (Of a) m ()
fromHandle :: MonadIO m => Handle -> Stream (Of String) m ()
toHandle :: MonadIO m => Handle -> Stream (Of String) m r -> m r
stdinLn :: MonadIO m => Stream (Of String) m ()
stdoutLn :: MonadIO m => Stream (Of String) m () -> m ()
iterateM :: Monad m => (a -> m a) -> m a -> Stream (Of a) m r
repeatM :: Monad m => m a -> Stream (Of a) m r
mapM :: Monad m => (a -> m b) -> Stream (Of a) m r -> Stream (Of b) m r
filterM :: Monad m =>
(a -> m Bool) -> Stream (Of a) m r -> Stream (Of a) m r

for :: (Monad m, Functor f) =>
Stream (Of a) m r -> (a -> Stream f m x) -> Stream f m r

Well-Typed

More advanced libraries

Producers vs. consumers

Some applications require yet more control:

▶ creating a buffer of a particular size,
▶ applying “back pressure”, i.e., detecting that a consumer has

difficulty keeping up and slowing down,
▶ . . .

To a certain extent, the streaming package allows this by replacing
Of with a different functor – but there are also packages such as
pipes and conduit.

Well-Typed

Extending the interface

In the streaming approach, next to lifting an effect, we have but one
option, to yield a value “downstream”. Yielding a value has no
response.

In both pipes and conduit, each component can communicate both
upstream and downstream:

▶ it can “request” a piece of information upstream, by sending a
message;

▶ it can “respond” a piece of information downstream, receiving a
confirmation.

Well-Typed

Extending the interface

In the streaming approach, next to lifting an effect, we have but one
option, to yield a value “downstream”. Yielding a value has no
response.

In both pipes and conduit, each component can communicate both
upstream and downstream:

▶ it can “request” a piece of information upstream, by sending a
message;

▶ it can “respond” a piece of information downstream, receiving a
confirmation.

Well-Typed

The Proxy type

The core type of the pipes package is a Proxy :

data Proxy a' a b' b m r =
Request a' (a -> Proxy a' a b' b m r)

| Respond b (b' -> Proxy a' a b' b m r)
| M (m (Proxy a' a b' b m r))
| Pure r

Request is for upstream communication.

Respond is for downstream communication.

M corresponds to Lift .

Pure corresponds to Return .

Well-Typed

The Proxy type

The core type of the pipes package is a Proxy :

data Proxy a' a b' b m r =
Request a' (a -> Proxy a' a b' b m r)

| Respond b (b' -> Proxy a' a b' b m r)
| M (m (Proxy a' a b' b m r))
| Pure r

The Stream (Of a) type corresponds to

type Producer a = Proxy Void () () a

Indeed, we also have

yield :: Monad m => a -> Producer a m ()

Well-Typed

Producers

type Producer a = Proxy Void () () a

Producers cannot send requests upstream – indicated by Void .

Producers can send a values downstream and receive nothing –
indicated by () – in return.

Well-Typed

Consumers

Another special case:

type Consumer a = Proxy () a () Void

Consumers can request values of type a from upstream by
sending () .

Consumers cannot send anything downstream – indicated by Void .

Where producers yield , consumers

await :: Monad m => Consumer a m a

Well-Typed

Consumers

Another special case:

type Consumer a = Proxy () a () Void

Consumers can request values of type a from upstream by
sending () .

Consumers cannot send anything downstream – indicated by Void .

Where producers yield , consumers

await :: Monad m => Consumer a m a

Well-Typed

Pipes

The generality to send multiple types of requests, or receive multiple
kinds of confirmations, is rarely used:

type Pipe a b = Proxy () a () b

A pipe can receive a items from upstream, and send b items to
downstream.

Well-Typed

Composing proxies

There is a choice between push- and pull-based composition:

▶ we can start running the downstream proxy, and once it requests
a value from upstream, evaluate upstream as far as necessary to
be able to pull;

▶ or we can start running the upstream proxy, and once it responds
a value to downstream, evaluate downstream as far as necessary
to be able to push.

The default is pull-based composition, but the pipes package offers
both if full control is desired.

Well-Typed

Standard composition

The standard composition operator is

(>->) :: Monad m
=> Proxy a' a () b m r
-> Proxy () b c' c m r
-> Proxy a' a c' c m r

The resulting proxy has:

▶ the upstream interface of the first argument,
▶ the downstream interface of the second argument,
▶ the intermediate interface must match.

Well-Typed

Effects

type Effect = Proxy Void () () Void

An effect can neither yield nor await .

It can only produce effects in the underlying monad, and have a final
result.

Only effects can be “run”:

runEffect :: Monad m => Effect m r -> m r

Well-Typed

Effects

type Effect = Proxy Void () () Void

An effect can neither yield nor await .

It can only produce effects in the underlying monad, and have a final
result.

Only effects can be “run”:

runEffect :: Monad m => Effect m r -> m r

Well-Typed

Examples

stdinLn :: MonadIO m => Producer String m ()
stdoutLn :: MonadIO m => Consumer String m ()

echo :: MonadIO m => m ()
echo = runEffect (stdinLn >-> stdoutLn)

performs an “echo” of each user input.

Well-Typed

Examples

stdinLn :: MonadIO m => Producer String m ()
stdoutLn :: MonadIO m => Consumer String m ()

echo :: MonadIO m => m ()
echo = runEffect (stdinLn >-> stdoutLn)

performs an “echo” of each user input.

Well-Typed

Examples (contd.)

map :: Monad m => (a -> b) -> Pipe a b m r

shout :: MonadIO m => m ()
shout = runEffect $
stdinLn >-> map (fmap toUpper) >-> stdoutLn

Well-Typed

Examples (contd.)

map :: Monad m => (a -> b) -> Pipe a b m r

shout :: MonadIO m => m ()
shout = runEffect $
stdinLn >-> map (fmap toUpper) >-> stdoutLn

Well-Typed

Examples (contd.)

take :: Monad m => Int -> Pipe a a m ()

shoutTwice :: MonadIO m => m ()
shoutTwice = runEffect $

stdinLn
>-> map (fmap toUpper)
>-> take 2
>-> stdoutLn

Well-Typed

Examples (contd.)

take :: Monad m => Int -> Pipe a a m ()

shoutTwice :: MonadIO m => m ()
shoutTwice = runEffect $

stdinLn
>-> map (fmap toUpper)
>-> take 2
>-> stdoutLn

Well-Typed

Examples (contd.)

readLn :: (Read a, MonadIO m) => Producer a m ()
takeWhile :: Monad m => (a -> Bool) -> Pipe a a m ()
sum :: (Num a, Monad m) => Producer a m () -> m a

sumInputs :: MonadIO m => m Int
sumInputs = sum $ readLn >-> takeWhile (/= 0)

Well-Typed

Examples (contd.)

readLn :: (Read a, MonadIO m) => Producer a m ()
takeWhile :: Monad m => (a -> Bool) -> Pipe a a m ()
sum :: (Num a, Monad m) => Producer a m () -> m a

sumInputs :: MonadIO m => m Int
sumInputs = sum $ readLn >-> takeWhile (/= 0)

Well-Typed

The conduit package

Yet another package (ecosystem) based on the same ideas:

ConduitM i o m r Pipe i o m r

Source m o Producer o m ()

Sink i m r Consumer i m r

(.|) (>->)

There are some minor differences, e.g. the conduit type of await can
detect whether the upstream component is finished:

await :: Monad m => Sink i m (Maybe i)

Well-Typed

Summary and comparison

▶ Understanding the Stream type is key to understanding all the
approaches.

▶ For unstanding the Stream type, the most important ingredient
is understanding the it is just an instance of a free monad, and
running streams makes use of the fact that we can inspect the
streams we build this way.

Well-Typed

Summary and comparison (contd.)

▶ The streaming package is the most recent of the discussed
packages, and in a way, the simplest. For many cases, it is enough,
and compellingly easy to use.

▶ The pipes package has a reputation as the theoretically most
elegant. It is immensely powerful, but can also be a bit
intimidating.

▶ The conduit package has gone through many iterations and is
now very similar to pipes. It is currently the most widely used
package in this area.

Well-Typed

