
Guide to the Haskell Type System
Haskell Types

Andres Löh
14–15 May 2018 — Copyright © 2018 Well-Typed LLP

Well-Typed
The Haskell Consultants

Introduction

Quizzes
An example

newtype Question = Q Text
newtype Answer = A Bool -- yes or no

exampleQ :: [Question]
exampleQ = [Q "Do you like Haskell?"

, Q "Do you like dynamic types?"
]

exampleA :: [Answer]
exampleA = [A True

, A False
]

Comments on the design?

Well-Typed

Quizzes
An example

newtype Question = Q Text
newtype Answer = A Bool -- yes or no

exampleQ :: [Question]
exampleQ = [Q "Do you like Haskell?"

, Q "Do you like dynamic types?"
]

exampleA :: [Answer]
exampleA = [A True

, A False
]

Comments on the design?

Well-Typed

Quizzes
An example

newtype Question = Q Text
newtype Answer = A Bool -- yes or no

exampleQ :: [Question]
exampleQ = [Q "Do you like Haskell?"

, Q "Do you like dynamic types?"
]

exampleA :: [Answer]
exampleA = [A True

, A False
]

Comments on the design?

Well-Typed

Quizzes
contd.

Questions and answers are supposed to be compatible,
i.e., of the same length.

Problem gets more pronounced as we continue:
type Score = Int
type Scoring = Answer -> Score

yesno :: Score -> Score -> Scoring
yesno yes no (A b) = if b then yes else no

exampleS :: [Scoring]
exampleS = [yesno 5 0

, yesno 0 2
]

score :: [Scoring] -> [Answer] -> Score
score ss as = sum (zipWith ($) ss as)

Well-Typed

Quizzes
contd.

Questions and answers are supposed to be compatible,
i.e., of the same length.
Problem gets more pronounced as we continue:
type Score = Int
type Scoring = Answer -> Score

yesno :: Score -> Score -> Scoring
yesno yes no (A b) = if b then yes else no

exampleS :: [Scoring]
exampleS = [yesno 5 0

, yesno 0 2
]

score :: [Scoring] -> [Answer] -> Score
score ss as = sum (zipWith ($) ss as)

Well-Typed

GADTs

From lists to vectors

The types
[Question]
[Answer]
[Scoring]

provide no information on the length of the list.

What if we had types Vec n a of “vectors” with exactly n elements
of type a ?
Numbers at the type level?

Well-Typed

From lists to vectors

The types
[Question]
[Answer]
[Scoring]

provide no information on the length of the list.
What if we had types Vec n a of “vectors” with exactly n elements
of type a ?

Numbers at the type level?

Well-Typed

From lists to vectors

The types
[Question]
[Answer]
[Scoring]

provide no information on the length of the list.
What if we had types Vec n a of “vectors” with exactly n elements
of type a ?
Numbers at the type level?

Well-Typed

Wishful thinking
What we’d like . . .
[] :: Vec 0 a
(:) :: a -> Vec n a -> Vec (1 + n) a

A first attempt (in plain Haskell):
data Zero -- uninhabited type
data Suc n -- uninhabited type
newtype Vec n a = Vec [a] -- phantom type
nil :: Vec Zero a
cons :: a -> Vec n a -> Vec (Suc n) a

nil = Vec []
x ‘cons‘ Vec xs = Vec (x : xs)

Comments on the design?

Well-Typed

Wishful thinking
What we’d like . . .
[] :: Vec 0 a
(:) :: a -> Vec n a -> Vec (1 + n) a

A first attempt (in plain Haskell):
data Zero -- uninhabited type
data Suc n -- uninhabited type
newtype Vec n a = Vec [a] -- phantom type
nil :: Vec Zero a
cons :: a -> Vec n a -> Vec (Suc n) a

nil = Vec []
x ‘cons‘ Vec xs = Vec (x : xs)

Comments on the design?

Well-Typed

Wishful thinking
What we’d like . . .
[] :: Vec 0 a
(:) :: a -> Vec n a -> Vec (1 + n) a

A first attempt (in plain Haskell):
data Zero -- uninhabited type
data Suc n -- uninhabited type
newtype Vec n a = Vec [a] -- phantom type
nil :: Vec Zero a
cons :: a -> Vec n a -> Vec (Suc n) a

nil = Vec []
x ‘cons‘ Vec xs = Vec (x : xs)

Comments on the design?

Well-Typed

Phantom types
Short evaluation

Phantom types:
I Useful if you want to expose extra type info in abstract interfaces.
I Examples: FFI (pointers), bindings to C libraries (GUI toolkits).
I Also useful for proxies and tagging (later today).

Not so great here, because we’d like pattern matching.

Well-Typed

GADT

newtype Vec n a = Vec [a] -- phantom type
nil :: Vec Zero a
cons :: a -> Vec n a -> Vec (Suc n) a

Kinds are the types of types.
The kind of normal, unparameterized types is * .

GADT syntax lists the types of constructors.
Each constructor must target the defined type (here: Vec).
But constructors can restrict the parameters.

Well-Typed

GADT

data Vec :: * -> * -> * where -- kind annotation
Nil :: Vec Zero a -- types of constrs
Cons :: a -> Vec n a -> Vec (Suc n) a -- . . .

Kinds are the types of types.
The kind of normal, unparameterized types is * .

GADT syntax lists the types of constructors.
Each constructor must target the defined type (here: Vec).
But constructors can restrict the parameters.

Well-Typed

GADT

data Vec :: * -> * -> * where -- kind annotation
Nil :: Vec Zero a -- types of constrs
(:*) :: a -> Vec n a -> Vec (Suc n) a -- . . .

infixr 5 :*

Kinds are the types of types.
The kind of normal, unparameterized types is * .

GADT syntax lists the types of constructors.
Each constructor must target the defined type (here: Vec).
But constructors can restrict the parameters.

Well-Typed

GADT

data Vec :: * -> * -> * where -- kind annotation
Nil :: Vec Zero a -- types of constrs
(:*) :: a -> Vec n a -> Vec (Suc n) a -- . . .

infixr 5 :*

Kinds are the types of types.
The kind of normal, unparameterized types is * .

GADT syntax lists the types of constructors.
Each constructor must target the defined type (here: Vec).
But constructors can restrict the parameters.

Well-Typed

GADT

data Vec :: * -> * -> * where -- kind annotation
Nil :: Vec Zero a -- types of constrs
(:*) :: a -> Vec n a -> Vec (Suc n) a -- . . .

infixr 5 :*

Kinds are the types of types.
The kind of normal, unparameterized types is * .

GADT syntax lists the types of constructors.
Each constructor must target the defined type (here: Vec).
But constructors can restrict the parameters.

Well-Typed

GADT syntax for “normal” ADTs

data Maybe :: * -> * where
Nothing :: Maybe a
Just :: a -> Maybe a

Well-Typed

Constructing vectors

> :t ’a’ :* ’b’ :* Nil
’a’ :* ’b’ :* Nil :: Vec (Suc (Suc Zero)) Char

Well-Typed

Natural numbers revisited

We defined:
data Zero
data Suc n

This simulates natural numbers on the type level:
Zero and Suc are types.

We’d normally define natural numbers like this:
data Nat = Zero | Suc Nat

Here, Nat is a type, and
Zero and Suc are terms.

Well-Typed

Natural numbers revisited

We defined:
data Zero
data Suc n

This simulates natural numbers on the type level:
Zero and Suc are types.

We’d normally define natural numbers like this:
data Nat = Zero | Suc Nat

Here, Nat is a type, and
Zero and Suc are terms.

Well-Typed

Promoting datatypes

Promotion (aka DataKinds) allows us to automatically lift (non-GADT)
datatypes to the kind level.

We define:
data Nat = Zero | Suc Nat

We can use Nat as a type and Nat as a kind.
We can use Zero and Suc as terms, and
’Zero and ’Suc as types.
The leading quote to indicate promotion is only required to resolve
ambiguities and can otherwise be omitted.

Well-Typed

Promoting datatypes
contd.

data Nat = Zero | Suc Nat

Normal interpretation:
Nat :: *
Zero :: Nat
Suc :: Nat -> Nat

Promoted interpretation:
Nat :: � -- “is a kind”; syntax not available in GHC
’Zero :: Nat
’Suc :: Nat -> Nat

Well-Typed

Vectors with promoted natural numbers

data Vec :: Nat -> * -> * where
Nil :: Vec ’Zero a
(:*) :: a -> Vec n a -> Vec (’Suc n) a

Not just more readable,
also rules out types like Vec Char (Suc Zero) .

Well-Typed

Vectors with promoted natural numbers

data Vec :: Nat -> * -> * where
Nil :: Vec Zero a
(:*) :: a -> Vec n a -> Vec (Suc n) a

Not just more readable,
also rules out types like Vec Char (Suc Zero) .

Well-Typed

Vectors with promoted natural numbers

data Vec :: Nat -> * -> * where
Nil :: Vec Zero a
(:*) :: a -> Vec n a -> Vec (Suc n) a

Not just more readable,
also rules out types like Vec Char (Suc Zero) .

Well-Typed

Deriving class instances on vectors

Standard Haskell deriving generally does not work for GADT.
But StandaloneDeriving often does!

data Vec :: Nat -> * -> * where
Nil :: Vec Zero a
(:*) :: a -> Vec n a -> Vec (Suc n) a

deriving instance Show a => Show (Vec n a)

Note:
I For standalone deriving, we have to manually provide the
instance context (which makes the job a bit easier for GHC).

I Here, we need Show a , but not Show n (and with promotion,
Show n isn’t even kind-correct).

Well-Typed

Deriving class instances on vectors

Standard Haskell deriving generally does not work for GADT.
But StandaloneDeriving often does!
data Vec :: Nat -> * -> * where
Nil :: Vec Zero a
(:*) :: a -> Vec n a -> Vec (Suc n) a

deriving instance Show a => Show (Vec n a)

Note:
I For standalone deriving, we have to manually provide the
instance context (which makes the job a bit easier for GHC).

I Here, we need Show a , but not Show n (and with promotion,
Show n isn’t even kind-correct).

Well-Typed

Deriving class instances on vectors

Standard Haskell deriving generally does not work for GADT.
But StandaloneDeriving often does!
data Vec :: Nat -> * -> * where
Nil :: Vec Zero a
(:*) :: a -> Vec n a -> Vec (Suc n) a

deriving instance Show a => Show (Vec n a)

Note:
I For standalone deriving, we have to manually provide the
instance context (which makes the job a bit easier for GHC).

I Here, we need Show a , but not Show n (and with promotion,
Show n isn’t even kind-correct).

Well-Typed

Back to quizzes
Recap

newtype Question = Q Text
newtype Answer = A Bool -- yes or no
exampleQ :: [Question]
exampleQ = [Q "Do you like Haskell?"

, Q "Do you like dynamic types?"
]

exampleA :: [Answer]
exampleA = [A True

, A False
]

“Compatibility” of questions and answers is now expressed in the
types.

Well-Typed

Back to quizzes
Now with vectors

newtype Question = Q Text
newtype Answer = A Bool -- yes or no
exampleQ :: Vec Two Question
exampleQ = Q "Do you like Haskell?"

:* Q "Do you like dynamic types?"
:* Nil

exampleA :: Vec Two Answer
exampleA = A True

:* A False
:* Nil

type Two = Suc (Suc Zero)

“Compatibility” of questions and answers is now expressed in the
types.

Well-Typed

Scoring a quiz
Old version

type Score = Int
type Scoring = Answer -> Score

yesno :: Score -> Score -> Scoring
yesno yes no (A b) = if b then yes else no

exampleS :: [Scoring]
exampleS = [yesno 5 0

, yesno 0 2
]

score :: [Scoring] -> [Answer] -> Score
score ss as = sum (zipWith ($) ss as)

Note that score requires length-compatible vectors!
We still have to define toList and zipWith . . .

Well-Typed

Scoring a quiz
Now with vectors

type Score = Int
type Scoring = Answer -> Score

yesno :: Score -> Score -> Scoring
yesno yes no (A b) = if b then yes else no

exampleS :: Vec Two Scoring
exampleS = yesno 5 0

:* yesno 0 2
:* Nil

score :: Vec n Scoring -> Vec n Answer -> Score
score ss as = L.sum (V.toList (V.zipWith ($) ss as))

Note that score requires length-compatible vectors!
We still have to define toList and zipWith . . .

Well-Typed

Vectors to lists

No surprises here:
toList :: Vec n a -> [a]
toList Nil = []
toList (x :* xs) = x : toList xs

Well-Typed

Zipping vectors

zipWith ::
(a -> b -> c) -> Vec n a -> Vec n b -> Vec n c

All three vectors have the same length!

zipWith op Nil Nil =
Nil

zipWith op (x :* xs) (y :* ys) =
(x ‘op‘ y) :* zipWith op xs ys

No other cases are required, or even type-correct!

Well-Typed

Zipping vectors

zipWith ::
(a -> b -> c) -> Vec n a -> Vec n b -> Vec n c

All three vectors have the same length!
zipWith op Nil Nil =
Nil

zipWith op (x :* xs) (y :* ys) =
(x ‘op‘ y) :* zipWith op xs ys

No other cases are required, or even type-correct!

Well-Typed

Vectors are functors

If zipWith works, fmap should be easy:

instance Functor (Vec n) where
fmap :: (a -> b) -> Vec n a -> Vec n b -- InstanceSigs
fmap f Nil = Nil
fmap f (x :* xs) = f x :* fmap f xs

In fact,
deriving instance Functor (Vec n)

just works.

Well-Typed

More examples

Many types of questions

We have:
newtype Question = Q Text

We want:
data Question = QYesNo Text

| QQuant Text

Well-Typed

Many types of questions

We have:
newtype Question = Q Text

We want:
data Question = Q Text QType

data QType = QYesNo | QQuant

Well-Typed

Many types of answers . . .

data Question = Q Text QType

data QType = QYesNo | QQuant

Now we need several answers as well:
data Answer = AYesNo Bool

| AQuant Int

Well-Typed

New compatibility problems

exampleQ :: Vec Two Question
exampleQ = Q "How many type errors?" QQuant

:* Q "Do you like Haskell?" QYesNo
:* Nil

exampleA :: Vec Two Answer
exampleA = AYesNo True

:* AQuant 42
:* Nil

Both vectors have the same length, but they’re still not “compatible”.
Leads to needless and repeated run-time checking.

Well-Typed

GADTs to the rescue

Idea
Let’s index questions and answers over their type.

Well-Typed

GADTs to the rescue

Idea
Let’s index questions and answers over their type.

data Question = Q Text QType

data QType = QYesNo | QQuant

data Answer = AYesNo Bool
| AQuant Int

Well-Typed

GADTs to the rescue

Idea
Let’s index questions and answers over their type.

data Question a = Q Text (QType a)

data QType :: * -> * where
QYesNo :: QType Bool
QQuant :: QType Int

data Answer = AYesNo Bool
| AQuant Int

Well-Typed

GADTs to the rescue

Idea
Let’s index questions and answers over their type.

data Question a = Q Text (QType a)

data QType :: * -> * where
QYesNo :: QType Bool
QQuant :: QType Int

data Answer :: * -> * where
AYesNo :: Bool -> Answer Bool
AQuant :: Int -> Answer Int

Well-Typed

Singleton types

data QType :: * -> * where
QYesNo :: QType Bool
QQuant :: QType Int

The types QType a are singleton types:
I For each a , there’s at most one non-bottom value of type

QType a .
I Singleton types provide a term-level representative for types.
I Singleton types are quite a useful concept in type-level
programming that we’ll encounter frequently.

Well-Typed

Singleton types

data QType :: * -> * where
QYesNo :: QType Bool
QQuant :: QType Int

The types QType a are singleton types:
I For each a , there’s at most one non-bottom value of type

QType a .
I Singleton types provide a term-level representative for types.
I Singleton types are quite a useful concept in type-level
programming that we’ll encounter frequently.

Well-Typed

New problems

data Question a = Q Text (QType a)

data QType :: * -> * where
QYesNo :: QType Bool
QQuant :: QType Int

data Answer :: * -> * where
AYesNo :: Bool -> Answer Bool
AQuant :: Int -> Answer Int

q :: Question Int
q = Q "How many type errors?" QQuant

a :: Answer Int
a = AQuant 0

Clearly compatible, but how to build lists or vectors?

Well-Typed

Environments (and heterogeneous lists)

Environments

What we need:
I to put things of different types into a list-like structure,
I to keep track of the number of elements and their types in the
type system.

A vector is indexed by its length,
but an environment is indexed by a list of types corresponding to
its elements.

Well-Typed

Environments

What we need:
I to put things of different types into a list-like structure,
I to keep track of the number of elements and their types in the
type system.

A vector is indexed by its length,
but an environment is indexed by a list of types corresponding to
its elements.

Well-Typed

Promoted lists

Fortunately, Haskell allows us to promote the built-in list type.
Normal interpretation:
[] :: * -> *
[] :: [a]
(:) :: a -> [a] -> [a]

Promoted interpretation:
[] :: � -> �
’[] :: [*]
’(:) :: *-> [*] -> [*]

Here, the quotes are often needed for resolving syntactic ambiguity.

Well-Typed

Promoted lists

Fortunately, Haskell allows us to promote the built-in list type.
Normal interpretation:
[] :: * -> *
[] :: [a]
(:) :: a -> [a] -> [a]

Promoted interpretation:
[] :: � -> �
’[] :: [*]
’(:) :: *-> [*] -> [*]

Here, the quotes are often needed for resolving syntactic ambiguity.

Well-Typed

A heterogeneous list

data HList :: [*] -> * where
HNil :: HList ’[]
HCons :: t -> HList ts -> HList (t ’: ts)

infixr 2 ‘HCons‘

Defined like this in the HList package.

Allows heterogeneous lists, but gives us too much flexibility:
Q "How many type errors?" QQuant

‘HCons‘ AQuant 0
‘HCons‘ HNil
:: HList ’[Question Int, Answer Int]

We want all elements to be questions, or all to be answers . . .

Well-Typed

A heterogeneous list

data HList :: [*] -> * where
HNil :: HList ’[]
HCons :: t -> HList ts -> HList (t ’: ts)

infixr 2 ‘HCons‘

Defined like this in the HList package.
Allows heterogeneous lists, but gives us too much flexibility:

Q "How many type errors?" QQuant
‘HCons‘ AQuant 0
‘HCons‘ HNil
:: HList ’[Question Int, Answer Int]

We want all elements to be questions, or all to be answers . . .

Well-Typed

Environments

data HList :: [*] -> * where
HNil :: HList ’[]
HCons :: t -> HList ts -> HList (t ’: ts)

data Questions :: [*] -> * where
QNil :: Questions ’[]
QCons ::
Question t -> Questions ts -> Questions (t ’: ts)

data Env :: [*] -> (* -> *) -> * where
Nil :: Env ’[] f
(:*) :: f t -> Env ts f -> Env (t ’: ts) f

Well-Typed

Environments

data HList :: [*] -> * where
HNil :: HList ’[]
HCons :: t -> HList ts -> HList (t ’: ts)

data Questions :: [*] -> * where
QNil :: Questions ’[]
QCons ::
Question t -> Questions ts -> Questions (t ’: ts)

data Env :: [*] -> (* -> *) -> * where
Nil :: Env ’[] f
(:*) :: f t -> Env ts f -> Env (t ’: ts) f

Well-Typed

Environments

data HList :: [*] -> * where
HNil :: HList ’[]
HCons :: t -> HList ts -> HList (t ’: ts)

data Questions :: [*] -> * where
QNil :: Questions ’[]
QCons ::
Question t -> Questions ts -> Questions (t ’: ts)

data Env :: [*] -> (* -> *) -> * where
Nil :: Env ’[] f
(:*) :: f t -> Env ts f -> Env (t ’: ts) f

Well-Typed

Questions and Answers

exampleQ :: Env ’[Int, Bool] Question
exampleQ = Q "How many type errors?" QQuant

:* Q "Do you like Haskell?" QYesNo
:* Nil

exampleA :: Env ’[Bool, Int] Answer
exampleA = AYesNo True

:* AQuant 42
:* Nil

It’s now clear from the types that these aren’t compatible.

Well-Typed

Deriving instances for environments
This fails:
deriving instance Show (Env xs f)

And that’s to be expected:
I in order to show an environment, we must know Show (f x)
for all x that are elements of xs ;

I but how do we express this?

For now, we can exploit that Question a and Answer a can be
shown without knowing anything about a :
deriving instance Show (QType a)
deriving instance Show (Question a)
deriving instance Show (Answer a)
deriving instance Show (Env xs Question)
deriving instance Show (Env xs Answer)

Well-Typed

Deriving instances for environments
This fails:
deriving instance Show (Env xs f)

And that’s to be expected:
I in order to show an environment, we must know Show (f x)
for all x that are elements of xs ;

I but how do we express this?
For now, we can exploit that Question a and Answer a can be
shown without knowing anything about a :
deriving instance Show (QType a)
deriving instance Show (Question a)
deriving instance Show (Answer a)
deriving instance Show (Env xs Question)
deriving instance Show (Env xs Answer)

Well-Typed

Scoring with environments

type Scoring a = Answer a -> Score

does not allow us to form Env xs Scoring .

newtype Scoring a = S (Answer a -> Score)

yesno :: Score -> Score -> Scoring Bool
yesno st sf = S (\(AYesNo b) -> if b then st else sf)

quantity :: (Int -> Int) -> Scoring Int
quantity f = S (\(AQuant n) -> f n)

Well-Typed

Scoring with environments

type Scoring a = Answer a -> Score

does not allow us to form Env xs Scoring .

newtype Scoring a = S (Answer a -> Score)

yesno :: Score -> Score -> Scoring Bool
yesno st sf = S (\(AYesNo b) -> if b then st else sf)

quantity :: (Int -> Int) -> Scoring Int
quantity f = S (\(AQuant n) -> f n)

Well-Typed

Scoring with environments

type Scoring a = Answer a -> Score

does not allow us to form Env xs Scoring .

newtype Scoring a = S (Answer a -> Score)

yesno :: Score -> Score -> Scoring Bool
yesno st sf = S (\(AYesNo b) -> if b then st else sf)

quantity :: (Int -> Int) -> Scoring Int
quantity f = S (\(AQuant n) -> f n)

Well-Typed

Scoring with environment
contd.

exampleS :: Env ’[Int, Bool] Scoring
exampleS = quantity negate

:* yesno 5 0
:* Nil

Direct definition of score :
score :: Env xs Scoring -> Env xs Answer -> Score
score Nil Nil = 0
score (S s :* ss) (a :* as) = s a + score ss as

We had:
score ss as = L.sum (V.toList (V.zipWith ($) ss as))

Can we recover that?

Well-Typed

Scoring with environment
contd.

exampleS :: Env ’[Int, Bool] Scoring
exampleS = quantity negate

:* yesno 5 0
:* Nil

Direct definition of score :
score :: Env xs Scoring -> Env xs Answer -> Score
score Nil Nil = 0
score (S s :* ss) (a :* as) = s a + score ss as

We had:
score ss as = L.sum (V.toList (V.zipWith ($) ss as))

Can we recover that?

Well-Typed

Scoring with environment
contd.

exampleS :: Env ’[Int, Bool] Scoring
exampleS = quantity negate

:* yesno 5 0
:* Nil

Direct definition of score :
score :: Env xs Scoring -> Env xs Answer -> Score
score Nil Nil = 0
score (S s :* ss) (a :* as) = s a + score ss as

We had:
score ss as = L.sum (V.toList (V.zipWith ($) ss as))

Can we recover that?

Well-Typed

From environments to lists
We cannot expect to turn arbitrary (heterogeneous) environments into
(homogeneous) lists.
data Env :: [*] -> (* -> *) -> * where
Nil :: Env ’[] f
(:*) :: f t -> Env ts f -> Env (t ’: ts) f

But what if f is K a with:
data K a b = K {unK :: a}

An Env xs (K a) is actually homogeneous:

toList :: Env xs (K a) -> [a]
toList Nil = []
toList (K x :* xs) = x : toList xs

Well-Typed

From environments to lists
We cannot expect to turn arbitrary (heterogeneous) environments into
(homogeneous) lists.
data Env :: [*] -> (* -> *) -> * where
Nil :: Env ’[] f
(:*) :: f t -> Env ts f -> Env (t ’: ts) f

But what if f is K a with:
data K a b = K {unK :: a}

An Env xs (K a) is actually homogeneous:

toList :: Env xs (K a) -> [a]
toList Nil = []
toList (K x :* xs) = x : toList xs

Well-Typed

From environments to lists
We cannot expect to turn arbitrary (heterogeneous) environments into
(homogeneous) lists.
data Env :: [*] -> (* -> *) -> * where
Nil :: Env ’[] f
(:*) :: f t -> Env ts f -> Env (t ’: ts) f

But what if f is K a with:
data K a b = K {unK :: a}

An Env xs (K a) is actually homogeneous:

toList :: Env xs (K a) -> [a]
toList Nil = []
toList (K x :* xs) = x : toList xs

Well-Typed

Env vs. HList

Instantiating f to the identity type constructor I gives us back
heterogeneous lists:
data I a = I {unI :: a}

data Env :: [*] -> (* -> *) -> * where
Nil :: Env ’[] f
(:*) :: f t -> Env ts f -> Env (t ’: ts) f

data HList :: [*] -> * where
HNil :: HList ’[]
HCons :: t -> HList ts -> HList (t ’: ts)

Env xs I ∼= HList xs

Well-Typed

Zipping environments

For vectors:
zipWith :: (a -> b -> c) -> Vec n a -> Vec n b -> Vec n c

For environments:
zipWith :: ... -> Env xs f -> Env xs g -> Env xs h

Let’s try to implement this (in the usual way):
zipWith op Nil Nil = Nil
zipWith op (x :* xs) (y :* ys) =
(x ‘op‘ y) :* zipWith op xs ys

Unfortunately, type inference does not work . . .

Well-Typed

Zipping environments
contd.

zipWith :: ... -> Env as f -> Env as g -> Env as h

zipWith op Nil Nil = Nil
zipWith op (x :* xs) (y :* ys) =
(x ‘op‘ y) :* zipWith op xs ys

The function op is applied to

x :: f a -- for some ‘a‘ that happens to be in ‘as‘
y :: g a -- for the same ‘a‘

While traversing the lists, op is called several times:
I the f and g are always the same,
I buth a changes.

So op should be polymorphic in a !

Well-Typed

Zipping environments
contd.

zipWith :: ... -> Env as f -> Env as g -> Env as h

zipWith op Nil Nil = Nil
zipWith op (x :* xs) (y :* ys) =
(x ‘op‘ y) :* zipWith op xs ys

The function op is applied to

x :: f a -- for some ‘a‘ that happens to be in ‘as‘
y :: g a -- for the same ‘a‘

While traversing the lists, op is called several times:
I the f and g are always the same,
I buth a changes.

So op should be polymorphic in a !

Well-Typed

Zipping environments
contd.

zipWith :: ... -> Env as f -> Env as g -> Env as h

zipWith op Nil Nil = Nil
zipWith op (x :* xs) (y :* ys) =
(x ‘op‘ y) :* zipWith op xs ys

The function op is applied to

x :: f a -- for some ‘a‘ that happens to be in ‘as‘
y :: g a -- for the same ‘a‘

While traversing the lists, op is called several times:
I the f and g are always the same,
I buth a changes.

So op should be polymorphic in a !

Well-Typed

Zipping environments
contd.

zipWith :: (f a -> g a -> h a) -- doesn’t work
-> Env as f -> Env as g -> Env as h

This is no good.
In a normal (rank-1) polymorphic type:

I the caller can choose all the quantified types,
I the callee must not assume anything about them.

Well-Typed

Zipping environments
contd.

zipWith :: (forall a. f a -> g a -> h a)
-> Env as f -> Env as g -> Env as h

This is the correct type.
We need a rank-2 polymorphic type:

I the argument itself is polymorphic,
I the caller can’t choose, but must provide a polymorphic function,
I the callee can use the argument at different types.

Well-Typed

The complete definition

zipWith :: (forall a. f a -> g a -> h a)
-> Env as f -> Env as g -> Env as h

zipWith op Nil Nil = Nil
zipWith op (x :* xs) (y :* ys) =
(x ‘op‘ y) :* zipWith op xs ys

Well-Typed

The scoring function revisited

Direct definition:
score :: Env xs Scoring -> Env xs Answer -> Score
score Nil Nil = 0
score (S s :* ss) (a :* as) = s a + score ss as

Old definition for vectors:
score ss as = L.sum (V.toList (V.zipWith ($) ss as))

New definition with environments:
score ss as = L.sum (E.toList (E.zipWith combine ss as))
where
combine :: Scoring a -> Answer a -> K Score a
combine (S f) a = K (f a)

Well-Typed

The scoring function revisited

Direct definition:
score :: Env xs Scoring -> Env xs Answer -> Score
score Nil Nil = 0
score (S s :* ss) (a :* as) = s a + score ss as

Old definition for vectors:
score ss as = L.sum (V.toList (V.zipWith ($) ss as))

New definition with environments:
score ss as = L.sum (E.toList (E.zipWith combine ss as))
where
combine :: Scoring a -> Answer a -> K Score a
combine (S f) a = K (f a)

Well-Typed

Pointing into structures

The situation

I We have an environment of questions and a compatible
environment of answers.

I We want to check if there’s any question containing a certain
word.

I If so, we want to obtain the corresponding answer and show it.

task :: Env as Question -> Env as Answer
-> (Text -> Bool) -- instead of “containing a certain word”
-> Maybe String -- there might be no such question

Well-Typed

The situation

I We have an environment of questions and a compatible
environment of answers.

I We want to check if there’s any question containing a certain
word.

I If so, we want to obtain the corresponding answer and show it.

task :: Env as Question -> Env as Answer
-> (Text -> Bool) -- instead of “containing a certain word”
-> Maybe String -- there might be no such question

Well-Typed

How would we do it normally?

task :: [Question] -> [Answer]
-> (Text -> Bool)
-> Maybe String

task qs as p = do
i <- findIndex (\(Q txt _) -> p txt) qs
let a = as !! i -- potential crash
return (show a)

Can we solve this similarly?
I We need a function like findIndex , but what should it return?
An Int is not suitable.

I We need a function like (!!) , ideally one that cannot crash. But
depending on index, we get results of different types!

Well-Typed

How would we do it normally?

task :: [Question] -> [Answer]
-> (Text -> Bool)
-> Maybe String

task qs as p = do
i <- findIndex (\(Q txt _) -> p txt) qs
let a = as !! i -- potential crash
return (show a)

Can we solve this similarly?
I We need a function like findIndex , but what should it return?
An Int is not suitable.

I We need a function like (!!) , ideally one that cannot crash. But
depending on index, we get results of different types!

Well-Typed

Pointers into environments

We are going to define a new datatype
Ptr :: [*] -> * -> *

such that Ptr xs x represents a “safe” pointer to an element of type
x in an environment with signature “xs”.

Observations and ideas:
I If the signature is empty, there should be no valid pointers.
I Otherwise, let’s follow the inductive structure of lists: a pointer
can either point at the head of an environment, or at the tail
(which requires a pointer into the tail).

Well-Typed

Pointers into environments

We are going to define a new datatype
Ptr :: [*] -> * -> *

such that Ptr xs x represents a “safe” pointer to an element of type
x in an environment with signature “xs”.
Observations and ideas:

I If the signature is empty, there should be no valid pointers.
I Otherwise, let’s follow the inductive structure of lists: a pointer
can either point at the head of an environment, or at the tail
(which requires a pointer into the tail).

Well-Typed

Pointers

data Ptr :: [*] -> * -> * where
Head :: Ptr (x ’: xs) x
Tail :: Ptr xs y -> Ptr (x ’: xs) y

pTwo :: Ptr (x ’: y ’: z ’: zs) z
pTwo = PSuc (PSuc PZero)

We start indexing at 0 .
Index 2 requires an environment of length at least 3 .

Well-Typed

Pointers

data Ptr :: [*] -> * -> * where
PZero :: Ptr (x ’: xs) x
PSuc :: Ptr xs y -> Ptr (x ’: xs) y

pTwo :: Ptr (x ’: y ’: z ’: zs) z
pTwo = PSuc (PSuc PZero)

We start indexing at 0 .
Index 2 requires an environment of length at least 3 .

Well-Typed

Pointers

data Ptr :: [*] -> * -> * where
PZero :: Ptr (x ’: xs) x
PSuc :: Ptr xs y -> Ptr (x ’: xs) y

pTwo :: Ptr (x ’: y ’: z ’: zs) z
pTwo = PSuc (PSuc PZero)

We start indexing at 0 .
Index 2 requires an environment of length at least 3 .

Well-Typed

Performing a lookup

(!!) :: Env as f -> Ptr as a -> f a
(x :* xs) !! PZero = x
(x :* xs) !! PSuc i = xs !! i

No cases for the empty environment needed.
No crashes possible.

Well-Typed

Finding a pointer
This is more problematic.
Let’s start with findIndex :
findIndex :: (a -> Bool) -> [a] -> Maybe Int
findIndex p [] = Nothing
findIndex p (x : xs)

| p x = Just 0
| otherwise = (1 +) <$> findIndex p xs

Now for environments:
findPtr ::
(forall a. f a -> Bool) -> Env as f -> Maybe (Ptr as ...)

findPtr p Nil = Nothing
findPtr p (x :* xs)

| p x = Just PZero
| otherwise = PSuc <$> findPtr p xs

Well-Typed

Finding a pointer
This is more problematic.
Let’s start with findIndex :
findIndex :: (a -> Bool) -> [a] -> Maybe Int
findIndex p [] = Nothing
findIndex p (x : xs)

| p x = Just 0
| otherwise = (1 +) <$> findIndex p xs

Now for environments:
findPtr ::
(forall a. f a -> Bool) -> Env as f -> Maybe (Ptr as ...)

findPtr p Nil = Nothing
findPtr p (x :* xs)

| p x = Just PZero
| otherwise = PSuc <$> findPtr p xs

Well-Typed

Hiding types
We don’t know the type of the resulting pointer:
findPtr ::
(forall a. f a -> Bool) -> Env as f -> Maybe (Ptr as ...)

Yet we do have to provide a result type.

data SomePtr :: [*] -> * where
SomePtr :: Ptr as a -> SomePtr as

This is called an existential type.
When matching on a SomePtr as , we know there exists a type a
such that . . . , but we don’t know the actual type.
findPtr ::
(forall a. f a -> Bool) -> Env as f -> Maybe (SomePtr as)

Well-Typed

Hiding types
We don’t know the type of the resulting pointer:
findPtr ::
(forall a. f a -> Bool) -> Env as f -> Maybe (Ptr as ...)

Yet we do have to provide a result type.
data SomePtr :: [*] -> * where
SomePtr :: Ptr as a -> SomePtr as

This is called an existential type.
When matching on a SomePtr as , we know there exists a type a
such that . . . , but we don’t know the actual type.
findPtr ::
(forall a. f a -> Bool) -> Env as f -> Maybe (SomePtr as)

Well-Typed

Hiding types
We don’t know the type of the resulting pointer:
findPtr ::
(forall a. f a -> Bool) -> Env as f -> Maybe (Ptr as ...)

Yet we do have to provide a result type.
data SomePtr :: [*] -> * where
SomePtr :: Ptr as a -> SomePtr as

This is called an existential type.
When matching on a SomePtr as , we know there exists a type a
such that . . . , but we don’t know the actual type.

findPtr ::
(forall a. f a -> Bool) -> Env as f -> Maybe (SomePtr as)

Well-Typed

Hiding types
We don’t know the type of the resulting pointer:
findPtr ::
(forall a. f a -> Bool) -> Env as f -> Maybe (Ptr as ...)

Yet we do have to provide a result type.
data SomePtr :: [*] -> * where
SomePtr :: Ptr as a -> SomePtr as

This is called an existential type.
When matching on a SomePtr as , we know there exists a type a
such that . . . , but we don’t know the actual type.
findPtr ::
(forall a. f a -> Bool) -> Env as f -> Maybe (SomePtr as)

Well-Typed

Completing findPtr

List version for comparison:
findIndex :: (a -> Bool) -> [a] -> Maybe Int
findIndex p [] = Nothing
findIndex p (x : xs)

| p x = Just 0
| otherwise = (1 +) <$> findIndex p xs

Version with environments:
findPtr ::
(forall a. f a -> Bool) -> Env as f -> Maybe (SomePtr as)

findPtr p Nil = Nothing
findPtr p (x :* xs)

| p x = Just (SomePtr PZero)
| otherwise = (\(SomePtr i) -> SomePtr (PSuc i))

<$> findPtr p xs

Well-Typed

Completing the task
task :: [Question] -> [Answer]

-> (Text -> Bool)
-> Maybe String

task qs as p = do
i <- findIndex (\(Q txt _) -> p txt) qs
let a = as !! i -- potential crash
return (show a)

task :: Env as Question -> Env as Answer
-> (Text -> Bool)
-> Maybe String

task qs as p = do
SomePtr i <- findPtr (\(Q txt _) -> p txt) qs
let a = as !! i -- safe
return (show a)

Well-Typed

Completing the task
task :: [Question] -> [Answer]

-> (Text -> Bool)
-> Maybe String

task qs as p = do
i <- findIndex (\(Q txt _) -> p txt) qs
let a = as !! i -- potential crash
return (show a)

task :: Env as Question -> Env as Answer
-> (Text -> Bool)
-> Maybe String

task qs as p = do
SomePtr i <- findPtr (\(Q txt _) -> p txt) qs
let a = as !! i -- safe
return (show a)

Well-Typed

Establishing invariants

Dealing with the unknown

The problem

In practice, we might want to read questions and answers from a file,
the network, or interactively – how can we possibly benefit from all the
type safety?

In such a situation:
I We still have to perform a run-time check.
I But we have to perform it once, going from a weakly typed to a
strongly typed value in the process.

I Once the additional invariants have been established, we don’t
need to check them again.

Well-Typed

Dealing with the unknown

The problem

In practice, we might want to read questions and answers from a file,
the network, or interactively – how can we possibly benefit from all the
type safety?

In such a situation:
I We still have to perform a run-time check.
I But we have to perform it once, going from a weakly typed to a
strongly typed value in the process.

I Once the additional invariants have been established, we don’t
need to check them again.

Well-Typed

“Typechecking” a list of answers
An example

Let’s assume we’ve obtained a weakly typed list of answers:
data WAnswer = WAYesNo Bool | WAQuant Int

Testing well-formedness in a “normal” setting:
chkAnswers :: [WQuestion] -> [WAnswer] -> Bool

In our setting, this becomes:
chkAnswers :: Env as Question -> [WAnswer]

-> Maybe (Env as Answer)

Note: Bool is replaced with something much more informative!

Well-Typed

“Typechecking” a list of answers
An example

Let’s assume we’ve obtained a weakly typed list of answers:
data WAnswer = WAYesNo Bool | WAQuant Int

Testing well-formedness in a “normal” setting:
chkAnswers :: [WQuestion] -> [WAnswer] -> Bool

In our setting, this becomes:
chkAnswers :: Env as Question -> [WAnswer]

-> Maybe (Env as Answer)

Note: Bool is replaced with something much more informative!

Well-Typed

“Typechecking” a list of answers
An example

Let’s assume we’ve obtained a weakly typed list of answers:
data WAnswer = WAYesNo Bool | WAQuant Int

Testing well-formedness in a “normal” setting:
chkAnswers :: [WQuestion] -> [WAnswer] -> Bool

In our setting, this becomes:
chkAnswers :: Env as Question -> [WAnswer]

-> Maybe (Env as Answer)

Note: Bool is replaced with something much more informative!

Well-Typed

Implementing chkAnswers

chkAnswers :: Env as Question -> [WAnswer]
-> Maybe (Env as Answer)

chkAnswers Nil [] = Just Nil
chkAnswers (q :* qs) (a : as) = (:*) <$> chkAnswer q a

<*> chkAnswers qs as
chkAnswers _ _ = Nothing

chkAnswer :: Question a -> WAnswer -> Maybe (Answer a)
chkAnswer (Q _ QYesNo) (WAYesNo b) = Just (AYesNo b)
chkAnswer (Q _ QQuant) (WAQuant n) = Just (AQuant n)
chkAnswer _ _ = Nothing

Well-Typed

Implementing chkAnswers

chkAnswers :: Env as Question -> [WAnswer]
-> Maybe (Env as Answer)

chkAnswers Nil [] = Just Nil
chkAnswers (q :* qs) (a : as) = (:*) <$> chkAnswer q a

<*> chkAnswers qs as
chkAnswers _ _ = Nothing

chkAnswer :: Question a -> WAnswer -> Maybe (Answer a)
chkAnswer (Q _ QYesNo) (WAYesNo b) = Just (AYesNo b)
chkAnswer (Q _ QQuant) (WAQuant n) = Just (AQuant n)
chkAnswer _ _ = Nothing

Well-Typed

Kind polymorphism

Yet more types of questions

Let’s assume we want to add another question type for which the
answer is also an Int :
data QType :: * -> * where
QYesNo :: QType Bool
QQuant :: QType Int
QArith :: QType Int

data Answer :: * -> * where
AYesNo :: Bool -> Answer Bool
AQuant :: Int -> Answer Int
AArith :: Int -> Answer Int

While this works, it opens up the possibility for incompatibility:
we could line up a QQuant with an AArith .

Well-Typed

Why * ?

data QType :: * -> * where
QYesNo :: QType Bool
QQuant :: QType Int
QArith :: QType Int

data Answer :: * -> * where
AYesNo :: Bool -> Answer Bool
AQuant :: Int -> Answer Int
AArith :: Int -> Answer Int

There’s not really a need for the index of Question , QType and
Answer to be of kind * .
In fact, there are many types a :: * for which QType a or
Answer a are uninhabited anyway.

Well-Typed

Why * ?

data QType :: * -> * where
QYesNo :: QType Bool
QQuant :: QType Int
QArith :: QType Int

data Answer :: * -> * where
AYesNo :: Bool -> Answer Bool
AQuant :: Int -> Answer Int
AArith :: Int -> Answer Int

There’s not really a need for the index of Question , QType and
Answer to be of kind * .
In fact, there are many types a :: * for which QType a or
Answer a are uninhabited anyway.

Well-Typed

Promotion again

data QType = QYesNo | QQuant | QArith

data Answer :: QType -> * where
AYesNo :: Bool -> Answer QYesNo
AQuant :: Int -> Answer QQuant
AArith :: Int -> Answer QArith

So far, so good – but what about Question ?

Well-Typed

Promotion again

data QType = QYesNo | QQuant | QArith

data Answer :: QType -> * where
AYesNo :: Bool -> Answer QYesNo
AQuant :: Int -> Answer QQuant
AArith :: Int -> Answer QArith

So far, so good – but what about Question ?

Well-Typed

Adapting Question

data Question (a :: QType) = Q Text...

A phantom type is not enough.
We need a GADT to match on, so that we can determine the type at
runtime.

Let’s introduce a singleton type for QType again:

data SQType :: QType -> * where
SQYesNo :: SQType QYesNo
SQQuant :: SQType QQuant
SQArith :: SQType QArith

data Question (a :: QType) = Q Text (SQType a)

Well-Typed

Adapting Question

data Question (a :: QType) = Q Text...

A phantom type is not enough.
We need a GADT to match on, so that we can determine the type at
runtime.
Let’s introduce a singleton type for QType again:

data SQType :: QType -> * where
SQYesNo :: SQType QYesNo
SQQuant :: SQType QQuant
SQArith :: SQType QArith

data Question (a :: QType) = Q Text (SQType a)

Well-Typed

Adapting Question

data Question (a :: QType) = Q Text...

A phantom type is not enough.
We need a GADT to match on, so that we can determine the type at
runtime.
Let’s introduce a singleton type for QType again:

data SQType :: QType -> * where
SQYesNo :: SQType QYesNo
SQQuant :: SQType QQuant
SQArith :: SQType QArith

data Question (a :: QType) = Q Text (SQType a)

Well-Typed

Environments?

data Env :: [*] -> (* -> *) -> * where
Nil :: Env ’[] f
(:*) :: f t -> Env ts f -> Env (t ’: ts) f

With
Question :: QType -> *

the type
Env ’[QYesNo, QQuant] Question

is no longer kind-correct.
Do we need a new Env type for every kind?

Well-Typed

Kind-polymorphic environments

In fact, Env works unchanged at a more general kind:
data Env :: [k] -> (k -> *) -> * where
Nil :: Env ’[] f
(:*) :: f t -> Env ts f -> Env (t ’: ts) f

The kind of (->) is * -> * -> * .
However, elements t of the list do not appear directly,
but only as an argument to f .
With the generalized kind, we can keep using environments as before.

Well-Typed

Kind-polymorphic environments

In fact, Env works unchanged at a more general kind:
data Env :: [k] -> (k -> *) -> * where
Nil :: Env ’[] f
(:*) :: f t -> Env ts f -> Env (t ’: ts) f

The kind of (->) is * -> * -> * .
However, elements t of the list do not appear directly,
but only as an argument to f .

With the generalized kind, we can keep using environments as before.

Well-Typed

Kind-polymorphic environments

In fact, Env works unchanged at a more general kind:
data Env :: [k] -> (k -> *) -> * where
Nil :: Env ’[] f
(:*) :: f t -> Env ts f -> Env (t ’: ts) f

The kind of (->) is * -> * -> * .
However, elements t of the list do not appear directly,
but only as an argument to f .
With the generalized kind, we can keep using environments as before.

Well-Typed

More kind polymorphism

Other types we’ve encountered do in fact have more general kinds:
Ptr :: [k] -> k -> *
SomePtr :: [k] -> *
K :: *-> k -> *

Well-Typed

Implementation of GADTs

System FC

GHC’s Core language is called System FC,
An explicitly typed lambda calculus
with kinds and equality constraints.

Equality constraints also appear in the surface language:
a ~ b

is a constraint that requires a and b to be equal.

Class constraints are translated to dictionary arguments in Core (and
at run-time),
whereas equality constraints appear in Core, but are not present at
run-time.

Well-Typed

System FC

GHC’s Core language is called System FC,
An explicitly typed lambda calculus
with kinds and equality constraints.
Equality constraints also appear in the surface language:
a ~ b

is a constraint that requires a and b to be equal.

Class constraints are translated to dictionary arguments in Core (and
at run-time),
whereas equality constraints appear in Core, but are not present at
run-time.

Well-Typed

System FC

GHC’s Core language is called System FC,
An explicitly typed lambda calculus
with kinds and equality constraints.
Equality constraints also appear in the surface language:
a ~ b

is a constraint that requires a and b to be equal.

Class constraints are translated to dictionary arguments in Core (and
at run-time),
whereas equality constraints appear in Core, but are not present at
run-time.

Well-Typed

GADTs with equality constraints

data Env :: [k] -> (k -> *) -> * where
Nil :: Env ’[] f
(:*) :: f t -> Env ts f -> Env (t ’: ts) f

can also be written as
data Env :: [k] -> (k -> *) -> * where
Nil :: (as ~ ’[]) => Env as f
(:*) :: (as ~ (t ’: ts)) => f t -> Env ts f -> Env as f

or even as
data Env as f =

(as ~ ’[]) => Nil
| forall t ts. (as ~ (t ’: ts)) => f t :* Env ts f

Well-Typed

Pattern matching on GADTs

Pattern matching on a GADT constructor reveals the equality
constraint(s), which are used to refine the types involved.
data Vec :: Nat -> * -> * where
Nil :: Vec Zero a
(:*) :: a -> Vec n a -> Vec (Suc n) a

fmap :: (a -> b) -> Vec n a -> Vec n b
fmap f Nil = Nil
fmap f (x :* xs) = f x :* fmap f xs

Well-Typed

Pattern matching on GADTs

Pattern matching on a GADT constructor reveals the equality
constraint(s), which are used to refine the types involved.
data Vec :: Nat -> * -> * where
Nil :: (n ~ Zero) => Vec n a
(:*) :: (n ~ Suc n’) => a -> Vec n’ a -> Vec n a

fmap :: (a -> b) -> Vec n a -> Vec n b
fmap f Nil = Nil
fmap f (x :* xs) = f x :* fmap f xs

Well-Typed

Pattern matching on GADTs

Pattern matching on a GADT constructor reveals the equality
constraint(s), which are used to refine the types involved.
data Vec :: Nat -> * -> * where
Nil :: (n ~ Zero) => Vec n a
(:*) :: (n ~ Suc n’) => a -> Vec n’ a -> Vec n a

fmap :: (a -> b) -> Vec n a -> Vec n b
fmap f Nil = Nil
fmap f (x :* xs) = f x :* fmap f xs

Well-Typed

Pattern matching on GADTs

Pattern matching on a GADT constructor reveals the equality
constraint(s), which are used to refine the types involved.
data Vec :: Nat -> * -> * where
Nil :: (n ~ Zero) => Vec n a
(:*) :: (n ~ Suc n’) => a -> Vec n’ a -> Vec n a

fmap :: (a -> b) -> Vec n a -> Vec n b
fmap f Nil = Nil
fmap f (x :* xs) = f x :* fmap f xs

In the first case, n ~ Zero .

Well-Typed

Pattern matching on GADTs

Pattern matching on a GADT constructor reveals the equality
constraint(s), which are used to refine the types involved.
data Vec :: Nat -> * -> * where
Nil :: (n ~ Zero) => Vec n a
(:*) :: (n ~ Suc n’) => a -> Vec n’ a -> Vec n a

fmap :: (a -> b) -> Vec n a -> Vec n b
fmap f Nil = Nil
fmap f (x :* xs) = f x :* fmap f xs

In the second case, n ~ Suc n’ :
xs :: Vec n’ a

fmap f xs :: Vec n’ b
f x :* fmap f xs :: Vec (Suc n’) b

Well-Typed

Pattern matching on GADTs

Pattern matching on a GADT constructor reveals the equality
constraint(s), which are used to refine the types involved.
data Vec :: Nat -> * -> * where
Nil :: (n ~ Zero) => Vec n a
(:*) :: (n ~ Suc n’) => a -> Vec n’ a -> Vec n a

fmap :: (a -> b) -> Vec n a -> Vec n b
fmap f Nil = Nil
fmap f (x :* xs) = f x :* fmap f xs

In the second case, n ~ Suc n’ :
xs :: Vec n’ a

fmap f xs :: Vec n’ b
f x :* fmap f xs :: Vec n b

Well-Typed

GADTs and type inference
Consider:
data X :: * -> * where
C :: Int -> X Int
D :: X a

f (C n) = [n]
f D = []

What is the type of f ?

f :: X a -> [Int]
f :: X a -> [a]

None of the two types is an instance of the other.
Functions matching on GADTs do not necessarily have a principal
type. GHC requires type signatures for such functions.

Well-Typed

GADTs and type inference
Consider:
data X :: * -> * where
C :: Int -> X Int
D :: X a

f (C n) = [n]
f D = []

What is the type of f ?
f :: X a -> [Int]
f :: X a -> [a]

None of the two types is an instance of the other.

Functions matching on GADTs do not necessarily have a principal
type. GHC requires type signatures for such functions.

Well-Typed

GADTs and type inference
Consider:
data X :: * -> * where
C :: Int -> X Int
D :: X a

f (C n) = [n]
f D = []

What is the type of f ?
f :: X a -> [Int]
f :: X a -> [a]

None of the two types is an instance of the other.
Functions matching on GADTs do not necessarily have a principal
type. GHC requires type signatures for such functions.

Well-Typed

Producers and singletons

Replicating vectors (or environments)
We’ve seen a number of functions on GADTs that consume them by
pattern matching, like:
fmap :: (a -> b) -> Vec n a -> ...
zipWith :: (a -> b -> c) -> Env xs f -> Env xs g -> ...
toList :: Env xs (K a) -> ...
findPtr :: (forall a. f a -> Bool) -> Env as f -> ...
(!!) :: Env as f -> Ptr as a -> ...

score :: Env xs Scoring -> Env xs Answer -> ...
task :: Env as Question -> Env as Answer -> ...
chkAnswers :: Env as Question -> [WAnswer] -> ...

But can we also do something like
replicate :: Int -> a -> [a]

on vectors or environments?
Well-Typed

Using an existential type
Option 1

data SomeVec :: * -> * where -- similar to SomePtr
SomeVec :: Vec n a -> SomeVec a

replicate :: Int -> a -> SomeVec a
replicate 0 x = SomeVec Nil
replicate n x = case replicate (n - 1) x of
SomeVec xs -> SomeVec (x :* xs)

Or even:
fromList :: [a] -> SomeVec a
fromList = ... -- exercise
replicate :: Int -> a -> SomeVec a
replicate n x = fromList (L.replicate n x)

Well-Typed

Using an existential type
Option 1

data SomeVec :: * -> * where -- similar to SomePtr
SomeVec :: Vec n a -> SomeVec a

replicate :: Int -> a -> SomeVec a
replicate 0 x = SomeVec Nil
replicate n x = case replicate (n - 1) x of
SomeVec xs -> SomeVec (x :* xs)

Or even:
fromList :: [a] -> SomeVec a
fromList = ... -- exercise
replicate :: Int -> a -> SomeVec a
replicate n x = fromList (L.replicate n x)

Well-Typed

Using an existential type
Option 1

data SomeVec :: * -> * where -- similar to SomePtr
SomeVec :: Vec n a -> SomeVec a

replicate :: Int -> a -> SomeVec a
replicate 0 x = SomeVec Nil
replicate n x = case replicate (n - 1) x of
SomeVec xs -> SomeVec (x :* xs)

Or even:
fromList :: [a] -> SomeVec a
fromList = ... -- exercise
replicate :: Int -> a -> SomeVec a
replicate n x = fromList (L.replicate n x)

Well-Typed

Using another vector as template
Option 2

replicate :: Vec n b -> a -> Vec n a
replicate Nil x = Nil
replicate (_ :* ys) x = x :* replicate ys x

Or:
replicate ys x = fmap (const x) ys

But we don’t need the elements of the input vector.
What happens if we strip the elements from the Vec type?

Well-Typed

Using another vector as template
Option 2

replicate :: Vec n b -> a -> Vec n a
replicate Nil x = Nil
replicate (_ :* ys) x = x :* replicate ys x

Or:
replicate ys x = fmap (const x) ys

But we don’t need the elements of the input vector.
What happens if we strip the elements from the Vec type?

Well-Typed

Singleton natural numbers

data Vec :: Nat -> * -> * where
Nil :: Vec Zero a
(:*) :: a -> Vec n a -> Vec (Suc n) a

data SNat :: Nat -> * where
SZero :: SNat Zero
SSuc :: SNat n -> SNat (Suc n)

length :: Vec n a -> SNat n
length Nil = SZero
length (_ :* xs) = SSuc (length xs)

Well-Typed

Singleton natural numbers

data Vec :: Nat -> * -> * where
Nil :: Vec Zero a
(:*) :: a -> Vec n a -> Vec (Suc n) a

data SNat :: Nat -> * where
SZero :: SNat Zero
SSuc :: SNat n -> SNat (Suc n)

length :: Vec n a -> SNat n
length Nil = SZero
length (_ :* xs) = SSuc (length xs)

Well-Typed

Using an SNat
Option 3

replicate :: SNat n -> a -> Vec n a
replicate SZero x = Nil
replicate (SSuc n) x = x :* replicate n x

Well-Typed

Singletons with class

For singletons, there’s only / at most one value per type.
Can we use the type system to produce the value?

class SNatI (n :: Nat) where
sNat :: SNat n

instance SNatI Zero where
sNat = SZero

instance SNatI n => SNatI (Suc n) where
sNat = SSuc sNat

Well-Typed

Singletons with class

For singletons, there’s only / at most one value per type.
Can we use the type system to produce the value?
class SNatI (n :: Nat) where
sNat :: SNat n

instance SNatI Zero where
sNat = SZero

instance SNatI n => SNatI (Suc n) where
sNat = SSuc sNat

Well-Typed

Using SNatI
Option 4

Option 3:
replicate :: SNat n -> a -> Vec n a
replicate SZero x = Nil
replicate (SSuc n) x = x :* replicate n x

Now:
replicate′ :: SNatI n => a -> Vec n a
replicate′ = replicate sNat

Example:
> zipWith (+) (replicate′ 1) (1 :* 2 :* 3 :* Nil)
2 :* (3 :* (4 :* Nil))

Well-Typed

Using SNatI
Option 4

Option 3:
replicate :: SNat n -> a -> Vec n a
replicate SZero x = Nil
replicate (SSuc n) x = x :* replicate n x

Now:
replicate′ :: SNatI n => a -> Vec n a
replicate′ = replicate sNat

Example:
> zipWith (+) (replicate′ 1) (1 :* 2 :* 3 :* Nil)
2 :* (3 :* (4 :* Nil))

Well-Typed

Equality

An example

Consider the following list-based code:
sameLength :: [a] -> [b] -> Bool
sameLength xs ys = length xs == length ys

How can we properly rewrite this to a function on vectors?
sameLength :: Vec m a -> Vec n a -> ...
sameLength xs ys = ...

Using a Bool as a result type is not suitable:
if sameLength v1 v2 then zipWith op v1 v2 else...

fails, but we’d like it to work.

Well-Typed

An example

Consider the following list-based code:
sameLength :: [a] -> [b] -> Bool
sameLength xs ys = length xs == length ys

How can we properly rewrite this to a function on vectors?
sameLength :: Vec m a -> Vec n a -> ...
sameLength xs ys = ...

Using a Bool as a result type is not suitable:
if sameLength v1 v2 then zipWith op v1 v2 else...

fails, but we’d like it to work.

Well-Typed

Equality on its own

Using a GADT, we can define a datatype that captures an equality
constraint:
data (:~:) :: k -> k -> * where
Refl :: a :~: a -- or: (a ~ b) => a :~: b

This is available (since GHC 7.8) in Data.Type.Equality .

Now if we have
sameLength :: Vec m a -> Vec n a -> Maybe (m :~: n)

we can do
case sameLength v1 v2 of
Just Refl -> zipWith op v1 v2
Nothing -> ...

Well-Typed

Equality on its own

Using a GADT, we can define a datatype that captures an equality
constraint:
data (:~:) :: k -> k -> * where
Refl :: a :~: a -- or: (a ~ b) => a :~: b

This is available (since GHC 7.8) in Data.Type.Equality .
Now if we have
sameLength :: Vec m a -> Vec n a -> Maybe (m :~: n)

we can do
case sameLength v1 v2 of
Just Refl -> zipWith op v1 v2
Nothing -> ...

Well-Typed

Completing the definition of sameLength

sameLength :: Vec m a -> Vec n a -> Maybe (m :~: n)
sameLength xs ys = length xs ==? length ys

Recall that length returns an SNat .

So we need:
(==?) :: SNat m -> SNat n -> Maybe (m :~: n)
SZero ==? SZero = Just Refl
SSuc m ==? SSuc n = case m ==? n of

Nothing -> Nothing
Just Refl -> Just Refl -- sic!

_ ==? _ = Nothing

Well-Typed

Completing the definition of sameLength

sameLength :: Vec m a -> Vec n a -> Maybe (m :~: n)
sameLength xs ys = length xs ==? length ys

Recall that length returns an SNat .
So we need:
(==?) :: SNat m -> SNat n -> Maybe (m :~: n)
SZero ==? SZero = Just Refl
SSuc m ==? SSuc n = case m ==? n of

Nothing -> Nothing
Just Refl -> Just Refl -- sic!

_ ==? _ = Nothing

Well-Typed

Decidable equality

The function (==?) is also called semi-decidable equality, because
we return a proof of equality on success.

In Data.Type.Equality , there’s a class for this:

class TestEquality (f :: k -> *) where
testEquality :: f a -> f b -> Maybe (a :~: b)

instance TestEquality SNat where
testEquality = (==?)

Well-Typed

Decidable equality

The function (==?) is also called semi-decidable equality, because
we return a proof of equality on success.

In Data.Type.Equality , there’s a class for this:

class TestEquality (f :: k -> *) where
testEquality :: f a -> f b -> Maybe (a :~: b)

instance TestEquality SNat where
testEquality = (==?)

Well-Typed

Properties of equality

GHC’s ~ is an equivalence relation.
We can make it explicit that :~: is as well:
sym :: (a :~: b) -> (b :~: a)
sym Refl = Refl

trans :: (a :~: b) -> (b :~: c) -> (a :~: c)
trans Refl Refl = Refl

Reflexivity is given by Refl itself.

castWith :: (a :~: b) -> a -> b
castWith Refl x = x

gcastWith :: (a :~: b) -> (a ~ b => r) -> r
gcastWith Refl x = x

Well-Typed

Properties of equality

GHC’s ~ is an equivalence relation.
We can make it explicit that :~: is as well:
sym :: (a :~: b) -> (b :~: a)
sym Refl = Refl

trans :: (a :~: b) -> (b :~: c) -> (a :~: c)
trans Refl Refl = Refl

Reflexivity is given by Refl itself.
castWith :: (a :~: b) -> a -> b
castWith Refl x = x

gcastWith :: (a :~: b) -> (a ~ b => r) -> r
gcastWith Refl x = x

Well-Typed

Type families

Appending two vectors

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

For vectors?

(++) :: Vec m a -> Vec n a -> Vec...a
Nil ++ ys = ys
(x :* xs) ++ ys = x :* (xs ++ ys)

How to complete the type?

Well-Typed

Appending two vectors

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x : xs) ++ ys = x : (xs ++ ys)

For vectors?
(++) :: Vec m a -> Vec n a -> Vec...a
Nil ++ ys = ys
(x :* xs) ++ ys = x :* (xs ++ ys)

How to complete the type?

Well-Typed

Natural number addition

(+) :: Nat -> Nat -> Nat
Zero + n = n
Suc m + n = Suc (m + n)

In a dependently-typed language:
(++) :: Vec a m -> Vec a n -> Vec a (m + n)

Unfortunately, we cannot promote functions.

Well-Typed

Natural number addition

(+) :: Nat -> Nat -> Nat
Zero + n = n
Suc m + n = Suc (m + n)

In a dependently-typed language:
(++) :: Vec a m -> Vec a n -> Vec a (m + n)

Unfortunately, we cannot promote functions.

Well-Typed

Use a GADT

GADTs express relations on the type level.
Every function is a relation . . .

data Plus :: Nat -> Nat -> Nat ->* where
PlusZero :: Plus Zero n n
PlusSuc :: Plus m n n’ -> Plus (Suc m) n (Suc n’)

(++) :: Plus m n p -> Vec m a -> Vec n a -> Vec p a
(++) PlusZero Nil ys = ys
(++) (PlusSuc p) (x :* xs) ys = x :* (++) p xs ys

While interesting (and perhaps even useful), it’s quite inconvenient to
have to provide a Plus argument by hand.

Well-Typed

Use a GADT

GADTs express relations on the type level.
Every function is a relation . . .
data Plus :: Nat -> Nat -> Nat ->* where
PlusZero :: Plus Zero n n
PlusSuc :: Plus m n n’ -> Plus (Suc m) n (Suc n’)

(++) :: Plus m n p -> Vec m a -> Vec n a -> Vec p a
(++) PlusZero Nil ys = ys
(++) (PlusSuc p) (x :* xs) ys = x :* (++) p xs ys

While interesting (and perhaps even useful), it’s quite inconvenient to
have to provide a Plus argument by hand.

Well-Typed

Use a GADT

GADTs express relations on the type level.
Every function is a relation . . .
data Plus :: Nat -> Nat -> Nat ->* where
PlusZero :: Plus Zero n n
PlusSuc :: Plus m n n’ -> Plus (Suc m) n (Suc n’)

(++) :: Plus m n p -> Vec m a -> Vec n a -> Vec p a
(++) PlusZero Nil ys = ys
(++) (PlusSuc p) (x :* xs) ys = x :* (++) p xs ys

While interesting (and perhaps even useful), it’s quite inconvenient to
have to provide a Plus argument by hand.

Well-Typed

Type family

(+) :: Nat -> Nat -> Nat
Zero + n = n
Suc m + n = Suc (m + n)

type family (+) (m :: Nat) (n :: Nat) :: Nat where
Zero + n = n
Suc m + n = Suc (m + n)

(++) :: Vec m a -> Vec n a -> Vec (m + n) a
Nil ++ ys = ys
(x :* xs) ++ ys = x :* (xs ++ ys)

Well-Typed

Type family

(+) :: Nat -> Nat -> Nat
Zero + n = n
Suc m + n = Suc (m + n)

type family (+) (m :: Nat) (n :: Nat) :: Nat where
Zero + n = n
Suc m + n = Suc (m + n)

(++) :: Vec m a -> Vec n a -> Vec (m + n) a
Nil ++ ys = ys
(x :* xs) ++ ys = x :* (xs ++ ys)

Well-Typed

Let’s look at the types

data Vec :: Nat -> * -> * where
Nil :: (n ~ Zero) => Vec n a
(:*) :: (n ~ Suc n’) => a -> Vec n’ a -> Vec n a

type family (+) (m :: Nat) (n :: Nat) :: Nat where
Zero + n = n
Suc m + n = Suc (m + n)

(++) :: Vec m a -> Vec n a -> Vec (m + n) a
Nil ++ ys = ys
(x :* xs) ++ ys = x :* (xs ++ ys)

Well-Typed

Let’s look at the types

data Vec :: Nat -> * -> * where
Nil :: (n ~ Zero) => Vec n a
(:*) :: (n ~ Suc n’) => a -> Vec n’ a -> Vec n a

type family (+) (m :: Nat) (n :: Nat) :: Nat where
Zero + n = n
Suc m + n = Suc (m + n)

(++) :: Vec m a -> Vec n a -> Vec (m + n) a
Nil ++ ys = ys
(x :* xs) ++ ys = x :* (xs ++ ys)

In the first case, m ~ Zero :
ys :: Vec a n

~ Vec a (Zero + n) -- type family
~ Vec a (m + n) -- m ~ Zero

Well-Typed

Let’s look at the types

data Vec :: Nat -> * -> * where
Nil :: (n ~ Zero) => Vec n a
(:*) :: (n ~ Suc n’) => a -> Vec n’ a -> Vec n a

type family (+) (m :: Nat) (n :: Nat) :: Nat where
Zero + n = n
Suc m + n = Suc (m + n)

(++) :: Vec m a -> Vec n a -> Vec (m + n) a
Nil ++ ys = ys
(x :* xs) ++ ys = x :* (xs ++ ys)

In the second case, m ~ Suc m’ :
x :* (xs ++ ys) :: Vec a Suc (m’ + n)

~ Vec a (Suc m’ + n) -- type family
~ Vec a (m + n) -- m ~ Suc m’

Well-Typed

Proving properties

Defining reverse on vectors

reverse :: Vec n a -> Vec n a
reverse xs = go xs Nil -- fails
where
go :: Vec m a -> Vec n a -> Vec (m + n) a
go Nil acc = acc
go (x :* xs) acc = go xs (x :* acc) -- fails

Unfortunately, this does not type-check. Why?

Well-Typed

Two simple properties

thmPlusZero :: SNat n -> (n + Zero) :~: n
thmPlusZero SZero = Refl
thmPlusZero (SSuc s) = gcastWith (thmPlusZero s) Refl

thmPlusSuc :: SNat m -> SNat n
-> (m + Suc n) :~: (Suc (m + n))

thmPlusSuc SZero _ = Refl
thmPlusSuc (SSuc s) n = gcastWith (thmPlusSuc s n) Refl

Well-Typed

Using the properties

reverse :: Vec n a -> Vec n a
reverse xs =
gcastWith (thmPlusZero (length xs)) $ go xs Nil
where
go :: Vec m a -> Vec n a -> Vec (m + n) a
go Nil acc = acc
go (x :* xs) acc =
gcastWith (thmPlusSuc (length xs) (length acc)) $
go xs (x :* acc)

Well-Typed

More on type families

Associated types

Type families can also be associated with a class:
class Sequence (as :: *) where
type Elt as :: *
filter :: (Elt as -> Bool) -> as -> as
...

instance Sequence [a] where
type Elt [a] = a
filter = L.filter

instance Sequence Text where
type Elt Text = Char
filter = T.filter

Mainly a syntactic difference.

Well-Typed

Associated types

Type families can also be associated with a class:
class Sequence (as :: *) where
type Elt as :: *
filter :: (Elt as -> Bool) -> as -> as
...

instance Sequence [a] where
type Elt [a] = a
filter = L.filter

instance Sequence Text where
type Elt Text = Char
filter = T.filter

Mainly a syntactic difference.

Well-Typed

Type family implementation
Type families introduce new symbols and associated equality
constraints to System FC:
type family (+) (m :: Nat) (n :: Nat) :: Nat
type instance Zero + n = n
type instance Suc m + n = Suc (m + n)

introduces (+) with

Zero + n ~ n
Suc m + n ~ Suc (m + n)

Type families:
I must always be fully applied.
I are open.
I must not have overlapping cases (but since GHC 7.8, closed type
families exist).

Well-Typed

Type family implementation
Type families introduce new symbols and associated equality
constraints to System FC:
type family (+) (m :: Nat) (n :: Nat) :: Nat
type instance Zero + n = n
type instance Suc m + n = Suc (m + n)

introduces (+) with

Zero + n ~ n
Suc m + n ~ Suc (m + n)

Type families:
I must always be fully applied.
I are open.
I must not have overlapping cases (but since GHC 7.8, closed type
families exist).

Well-Typed

Type family implementation
Type families introduce new symbols and associated equality
constraints to System FC:
type family (+) (m :: Nat) (n :: Nat) :: Nat
type instance Zero + n = n
type instance Suc m + n = Suc (m + n)

introduces (+) with

Zero + n ~ n
Suc m + n ~ Suc (m + n)

Type families:
I must always be fully applied.
I are open.
I must not have overlapping cases (but since GHC 7.8, closed type
families exist).

Well-Typed

Injectivity

Different representations of data
An example

class Compactable (a :: *) where
type Compact a :: *
compact :: a -> Compact a
uncompact :: Compact a -> a
size :: Compact a -> Int

instance Compactable Int
instance Compactable a => Compactable [a]

Well-Typed

A strange error

Couldn’t match type ‘Compact a ’ with ‘Compact a0 ’
Expected type: ‘Compact a -> Int ’
Actual type: ‘Compact a0 -> Int ’
NB: ‘Compact ’ is a type function, and may not be injective
The type variable ‘a0 ’ is amgiguous
In the ambiguity check for ‘size ’
To defer the ambiguity check to use sites,
enable AllowAmbiguousTypes

We can try enabling AllowAmbiguousTypes, but then . . .

Well-Typed

A strange error
contd.

test = size (compact [1, 2, 3])

Couldn’t match expected type ‘Compact a0 ’
with actual type ‘Compact [t0] ’

NB: ‘Compact ’ is a type function, and may not be injective
The type variables ‘a0 ’, ‘t0 ’ are ambiguous
In the first argument of ‘size ’, namely ‘(compact [1, 2, 3]) ’
In the expression: size (compact [1, 2, 3])

test = size (compact ([1, 2, 3] :: [Int]) :: Compact [Int])

is not improving anything.

Well-Typed

A strange error
contd.

test = size (compact [1, 2, 3])

Couldn’t match expected type ‘Compact a0 ’
with actual type ‘Compact [t0] ’

NB: ‘Compact ’ is a type function, and may not be injective
The type variables ‘a0 ’, ‘t0 ’ are ambiguous
In the first argument of ‘size ’, namely ‘(compact [1, 2, 3]) ’
In the expression: size (compact [1, 2, 3])

test = size (compact ([1, 2, 3] :: [Int]) :: Compact [Int])

is not improving anything.

Well-Typed

A strange error
contd.

test = size (compact [1, 2, 3])

Couldn’t match expected type ‘Compact a0 ’
with actual type ‘Compact [t0] ’

NB: ‘Compact ’ is a type function, and may not be injective
The type variables ‘a0 ’, ‘t0 ’ are ambiguous
In the first argument of ‘size ’, namely ‘(compact [1, 2, 3]) ’
In the expression: size (compact [1, 2, 3])

test = size (compact ([1, 2, 3] :: [Int]) :: Compact [Int])

is not improving anything.

Well-Typed

Explaining the error

test = size (compact [1, 2, 3] :: Compact [Int])

size :: Compactable a => Compact a -> Int
compact [1, 2, 3] :: Compact [Int]

So we have to unify:
Compact [Int] ~ Compact a

It seems like a ~ [Int] is an obvious solution, but is it the only one?

Well-Typed

Explaining the error

test = size (compact [1, 2, 3] :: Compact [Int])

size :: Compactable a => Compact a -> Int
compact [1, 2, 3] :: Compact [Int]

So we have to unify:
Compact [Int] ~ Compact a

It seems like a ~ [Int] is an obvious solution, but is it the only one?

Well-Typed

Type families need not be injective

type Compact [a] = Array Int (Compact a)
type Compact Int = Int

newtype Count = Count Int
type Compact Count = Int

Now:
Compact [Int] ~ Array Int Int ~ Compact [Count]

Well-Typed

Type families need not be injective

type Compact [a] = Array Int (Compact a)
type Compact Int = Int

newtype Count = Count Int
type Compact Count = Int

Now:
Compact [Int] ~ Array Int Int ~ Compact [Count]

Well-Typed

Injectivity

In general, a function f is called injective if
f x ~ f y implies x ~ y .

Datatypes (both data and newtype) are always injective,
but type families (and type synonyms) are generally not.

Well-Typed

Injectivity

In general, a function f is called injective if
f x ~ f y implies x ~ y .
Datatypes (both data and newtype) are always injective,
but type families (and type synonyms) are generally not.

Well-Typed

Recognizing problematic functions

class Compactable (a :: *) where
type Compact a :: *
compact :: a -> Compact a
uncompact :: Compact a -> a
size :: Compact a -> Int

In size , the type variable a appears only as an argument to a type
family – it seems impossible to use this function in practice.

Well-Typed

Recognizing problematic functions

class Compactable (a :: *) where
type Compact a :: *
compact :: a -> Compact a
uncompact :: Compact a -> a
size :: Compact a -> Int

In size , the type variable a appears only as an argument to a type
family – it seems impossible to use this function in practice.

Well-Typed

Making the type family injective
Solution 1

class Compactable (a :: *) where
type Compact a = (r :: *) | r -> a
compact :: a -> Compact a
uncompact :: Compact a -> a
size :: Compact a -> Int

instance Compactable Int
instance Compactable a => Compactable [a]

test = size (compact [1, 2, 3] :: Compact [Int])

The function test is now accepted. GHC enforces injectivity.
Straight-forward, but not all type families are injective, so not always an
option. Requires GHC 8; syntax may be subject to change.

Well-Typed

Making the type family injective
Solution 1

class Compactable (a :: *) where
type Compact a = (r :: *) | r -> a
compact :: a -> Compact a
uncompact :: Compact a -> a
size :: Compact a -> Int

instance Compactable Int
instance Compactable a => Compactable [a]

test = size (compact [1, 2, 3] :: Compact [Int])

The function test is now accepted. GHC enforces injectivity.
Straight-forward, but not all type families are injective, so not always an
option. Requires GHC 8; syntax may be subject to change.

Well-Typed

Redesigning the class hierarchy
Solution 2

class Size (Compact a) => Compactable (a :: *) where
type Compact a :: *
compact :: a -> Compact a
uncompact :: Compact a -> a

class Size a where
size :: a -> Int

Probably the best solution in this situation.

Now
test = size (compact ([1, 2, 3] :: [Int]))

typechecks as long as Size (Compact [Int]) holds.

Well-Typed

Redesigning the class hierarchy
Solution 2

class Size (Compact a) => Compactable (a :: *) where
type Compact a :: *
compact :: a -> Compact a
uncompact :: Compact a -> a

class Size a where
size :: a -> Int

Probably the best solution in this situation.
Now
test = size (compact ([1, 2, 3] :: [Int]))

typechecks as long as Size (Compact [Int]) holds.

Well-Typed

Using a proxy
Solution 3

data Proxy (a :: k) = Proxy

class Compactable (a ::*) where
type Compact a ::*
compact :: a -> Compact a
uncompact :: Compact a -> a
size :: Proxy a -> Compact a -> Int

The additional argument is annoying, but this always works.
test = size (Proxy :: Proxy [Int])
(compact ([1, 2, 3] :: [Int]))

data Tagged (a :: k) b = Tagged b

size :: Tagged a (Compact a) -> Int -- another option

Well-Typed

Using a proxy
Solution 3

data Proxy (a :: k) = Proxy

class Compactable (a ::*) where
type Compact a ::*
compact :: a -> Compact a
uncompact :: Compact a -> a
size :: Proxy a -> Compact a -> Int

The additional argument is annoying, but this always works.
test = size (Proxy :: Proxy [Int])
(compact ([1, 2, 3] :: [Int]))

data Tagged (a :: k) b = Tagged b

size :: Tagged a (Compact a) -> Int -- another option

Well-Typed

Using explicit type application
Solution 4

class Compactable (a :: *) where
type Compact a :: *
compact :: a -> Compact a
uncompact :: Compact a -> a
size :: Compact a -> Int

test = size @[Int]
(compact ([1, 2, 3] :: [Int]))

Requires GHC 8.

Well-Typed

Writing an inverse
Solution 4

If the function actually is injective,
we can “prove” it by writing an inverse:
type family Uncompact (a :: *) :: *

class (Uncompact (Compact a) ~ a)
=> Compactable (a :: *) where

type Compact a :: *
compact :: a -> Compact a
uncompact :: Compact a -> a
size :: Compact a -> Int

Extra work to define Uncompact .

But now, by applying Uncompact , we can actually solve

Compact a ~ Compact b

Well-Typed

Writing an inverse
Solution 4

If the function actually is injective,
we can “prove” it by writing an inverse:
type family Uncompact (a :: *) :: *

class (Uncompact (Compact a) ~ a)
=> Compactable (a :: *) where

type Compact a :: *
compact :: a -> Compact a
uncompact :: Compact a -> a
size :: Compact a -> Int

Extra work to define Uncompact .
But now, by applying Uncompact , we can actually solve

Compact a ~ Compact b

Well-Typed

Data families
Next to
type family X...

there’s also
data family X...

that allows
data instance...
newtype instance...

(And associated datatypes correspondingly.)

Tempting because they’re always injective – not useful if you work with
types that already exist.

Well-Typed

Generalizing singleton types

We can use a kind-indexed data family to make singletons less ad-hoc.
Before:
data SNat :: Nat -> * where
SZero :: SNat Zero
SSuc :: SNat n -> SNat (Suc n)

Now:
data family Sing (a :: k)

data instance Sing (n :: Nat) where
SZero :: Sing Zero
SSuc :: Sing n -> Sing (Suc n)

Well-Typed

Generalizing singleton types

We can use a kind-indexed data family to make singletons less ad-hoc.
Before:
data SNat :: Nat -> * where
SZero :: SNat Zero
SSuc :: SNat n -> SNat (Suc n)

Now:
data family Sing (a :: k)

data instance Sing (n :: Nat) where
SZero :: Sing Zero
SSuc :: Sing n -> Sing (Suc n)

Well-Typed

Constraint kinds

Classes have kinds

Eq :: * -> Constraint
Functor :: (* -> *) -> Constraint
MonadState :: * -> (* -> *) -> Constraint

By viewing constraints as kind, we can e.g.
I define class synonyms using type ,
I parameterize types and classes over constraints,
I define constraint families.

Well-Typed

Classes have kinds

Eq :: * -> Constraint
Functor :: (* -> *) -> Constraint
MonadState :: * -> (* -> *) -> Constraint

By viewing constraints as kind, we can e.g.
I define class synonyms using type ,
I parameterize types and classes over constraints,
I define constraint families.

Well-Typed

Restricted monads
The classic example

Sets as defined in Data.Set aren’t monads:
returnSet :: a -> Set a
bindSet :: Ord a => Set a -> (a -> Set b) -> Set b

The Ord constraint does not fit.

class RMonad (c :: * -> Constraint) (m :: * -> *) where
return :: c a => a -> m a
(>>=) :: c a => m a -> (a -> m b) -> m b

instance RMonad Ord Set

Well-Typed

Restricted monads
The classic example

Sets as defined in Data.Set aren’t monads:
returnSet :: a -> Set a
bindSet :: Ord a => Set a -> (a -> Set b) -> Set b

The Ord constraint does not fit.
class RMonad (c :: * -> Constraint) (m :: * -> *) where
return :: c a => a -> m a
(>>=) :: c a => m a -> (a -> m b) -> m b

instance RMonad Ord Set

Well-Typed

Showing environments

type family
All (c :: k -> Constraint) (xs :: [k]) :: Constraint
where
All c ’[] = ()
All c (x ’: xs) = (c x, All c xs)

type family Map (f :: k1 -> k2) (xs :: [k1]) :: [k2]
where
Map f ’[] = ’[]
Map f (x ’: xs) = (f x) ’: (Map f xs)

data Env :: [*] -> (* -> *) -> * where
Nil :: Env ’[] f
(:*) :: f t -> Env ts f -> Env (t ’: ts) f

deriving instance All Show (Map f xs) => Show (Env xs f)

Well-Typed

Showing environments

type family
All (c :: k -> Constraint) (xs :: [k]) :: Constraint
where
All c ’[] = ()
All c (x ’: xs) = (c x, All c xs)

type family Map (f :: k1 -> k2) (xs :: [k1]) :: [k2]
where
Map f ’[] = ’[]
Map f (x ’: xs) = (f x) ’: (Map f xs)

data Env :: [*] -> (* -> *) -> * where
Nil :: Env ’[] f
(:*) :: f t -> Env ts f -> Env (t ’: ts) f

deriving instance All Show (Map f xs) => Show (Env xs f)

Well-Typed

More

What we haven’t (explicitly) covered

I Functional dependencies
I Type literals
I Higher-order type families
I Indexed / parameterized monads
I Open type families
I Roles
I . . .

Well-Typed

