Guide to the Haskell Type System

Haskell Types

Andres Löh

14–15 May 2018 — Copyright © 2018 Well-Typed LLP

Quizzes

An example

```
newtype Question = Q Text
newtype Answer = A Bool -- yes or no
```



```
newtype Question = Q Text
newtype Answer = A Bool -- yes or no
exampleQ :: [Question]
exampleQ = [Q "Do you like Haskell?"
           , Q "Do you like dynamic types?"
exampleA :: [Answer]
exampleA = [A True]
           , A False
```



```
newtype Question = O Text
newtype Answer = A Bool -- yes or no
exampleQ :: [Question]
exampleQ = [Q "Do you like Haskell?"
           , Q "Do you like dynamic types?"
exampleA :: [Answer]
exampleA = [A True
           , A False
```

Comments on the design?

Quizzes

contd.

Questions and answers are supposed to be **compatible**, i.e., of the **same length**.

Questions and answers are supposed to be **compatible**, i.e., of the **same length**.

Problem gets more pronounced as we continue:

```
type Score = Int
type Scoring = Answer -> Score
yesno :: Score -> Score -> Scoring
yesno yes no (A b) = if b then yes else no
exampleS :: [Scoring]
exampleS = [vesno 5 0]
           . vesno 0 2
score :: [Scoring] -> [Answer] -> Score
score ss as = sum (zipWith ($) ss as)
```


From lists to vectors

The types

[Question]
[Answer]

[Scoring]

provide no information on the length of the list.

From lists to vectors

The types

[Question]

[Answer]

[Scoring]

provide no information on the length of the list.

What if we had types Vec n a of "vectors" with exactly n elements of type a?

From lists to vectors

The types

```
[Question]
```

[Answer]

[Scoring]

provide no information on the length of the list.

What if we had types Vec n a of "**vectors**" with exactly n elements of type a?

Numbers at the type level?

Wishful thinking

What we'd like ...

```
[] :: Vec 0 a
(:) :: a -> Vec n a -> Vec (1 + n) a
```


Wishful thinking

What we'd like ...

```
[] :: Vec 0 a
(:) :: a -> Vec n a -> Vec (1 + n) a
```

A first attempt (in plain Haskell):

Wishful thinking

What we'd like ...

```
[] :: Vec 0 a
(:) :: a -> Vec n a -> Vec (1 + n) a
```

A first attempt (in plain Haskell):

Comments on the design?

Phantom types

Short evaluation

Phantom types:

- Useful if you want to expose extra type info in abstract interfaces.
- Examples: FFI (pointers), bindings to C libraries (GUI toolkits).
- Also useful for proxies and tagging (later today).

Not so great here, because we'd like pattern matching.


```
newtype Vec n a = Vec [a] -- phantom type
nil :: Vec Zero a
cons :: a -> Vec n a -> Vec (Suc n) a
```


Kinds are the types of types.

The kind of normal, unparameterized types is \star .


```
      data Vec :: * -> * -> * where
      -- kind annotation

      Nil :: Vec Zero a
      -- types of constrs

      (:*) :: a -> Vec n a -> Vec (Suc n) a -- ...

      infixr 5 :*
```

Kinds are the types of types.

The kind of normal, unparameterized types is \star .

GADT syntax lists the types of constructors.

Each constructor must target the defined type (here: Vec).

But constructors can **restrict** the parameters.

GADT syntax for "normal" ADTs

```
data Maybe :: * -> * where
  Nothing :: Maybe a
  Just :: a -> Maybe a
```

Constructing vectors

```
> :t 'a' :* 'b' :* Nil
'a' :* 'b' :* Nil :: Vec (Suc (Suc Zero)) Char
```


Natural numbers revisited

We defined:

data Zero
data Suc n

This simulates natural numbers on the type level:

Zero and Suc are types.

Natural numbers revisited

We defined:

data Zero
data Suc n

This simulates natural numbers on the type level:

Zero and Suc are types.

We'd normally define natural numbers like this:

data Nat = Zero | Suc Nat

Here, Nat is a **type**, and Zero and Suc are **terms**.

Promoting datatypes

Promotion (aka DataKinds) allows us to automatically lift (non-GADT) datatypes to the kind level.

We define:

```
data Nat = Zero | Suc Nat
```

We can use Nat as a type and Nat as a kind.

We can use Zero and Suc as terms, and 'Zero and 'Suc as types.

The leading quote to indicate promotion is only required to resolve ambiguities and can otherwise be omitted.

Promoting datatypes

contd.

```
data Nat = Zero | Suc Nat
```

Normal interpretation:

```
Nat :: *
Zero :: Nat
```

Suc :: Nat -> Nat

Promoted interpretation:

```
Nat :: □ -- "is a kind"; syntax not available in GHC
```

'Zero :: Nat

'Suc :: Nat -> Nat

Vectors with promoted natural numbers

```
data Vec :: Nat -> * -> * where
  Nil :: Vec 'Zero a
  (:*) :: a -> Vec n a -> Vec ('Suc n) a
```


Vectors with promoted natural numbers

```
data Vec :: Nat -> * -> * where
  Nil :: Vec Zero a
  (:*) :: a -> Vec n a -> Vec (Suc n) a
```


Vectors with promoted natural numbers

```
data Vec :: Nat -> * -> * where
  Nil :: Vec Zero a
  (:*) :: a -> Vec n a -> Vec (Suc n) a
```

Not just more readable, also rules out types like Vec Char (Suc Zero) .

Deriving class instances on vectors

Standard Haskell deriving generally does not work for GADT. But StandaloneDeriving often does!

Deriving class instances on vectors

Standard Haskell deriving generally does not work for GADT. But StandaloneDeriving often does!

```
data Vec :: Nat -> * -> * where
  Nil :: Vec Zero a
  (:*) :: a -> Vec n a -> Vec (Suc n) a

deriving instance Show a => Show (Vec n a)
```


Deriving class instances on vectors

Standard Haskell deriving generally does not work for GADT. But StandaloneDeriving often does!

```
data Vec :: Nat -> * -> * where
  Nil :: Vec Zero a
  (:*) :: a -> Vec n a -> Vec (Suc n) a

deriving instance Show a => Show (Vec n a)
```

Note:

- For standalone deriving, we have to manually provide the instance context (which makes the job a bit easier for GHC).
- ► Here, we need Show a , but not Show n (and with promotion, Show n isn't even kind-correct).


```
newtype Question = Q Text
newtype Answer = A Bool -- yes or no
exampleQ :: [Question]
exampleQ = [Q "Do you like Haskell?"
           , O "Do you like dynamic types?"
exampleA :: [Answer]
exampleA = [A True]
           . A False
```


Back to quizzes

Now with vectors

```
newtype Question = Q Text
newtype Answer = A Bool -- yes or no
exampleQ :: Vec Two Question
exampleQ = Q "Do you like Haskell?"
            :* O "Do you like dynamic types?"
            :* Nil
exampleA :: Vec Two Answer
exampleA = A True
            :* A False
            :* Nil
type Two = Suc (Suc Zero)
```

"Compatibility" of questions and answers is now expressed in the types.


```
type Score = Int
type Scoring = Answer -> Score
yesno :: Score -> Score -> Scoring
yesno yes no (A b) = if b then yes else no
exampleS :: [Scoring]
exampleS = [vesno 5 0]
           , yesno 0 2
score :: [Scoring] -> [Answer] -> Score
score ss as = sum (zipWith ($) ss as)
```

Scoring a quiz

Now with vectors

```
type Score = Int
type Scoring = Answer -> Score
yesno :: Score -> Score -> Scoring
yesno yes no (A b) = if b then yes else no
exampleS :: Vec Two Scoring
exampleS = vesno 5 0
            :* vesno 0 2
            :* Nil
score :: Vec n Scoring -> Vec n Answer -> Score
score ss as = L.sum (V.toList (V.zipWith ($) ss as))
```

Note that **score** requires length-compatible vectors!

We still have to define **toList** and **zipWith** ...

Vectors to lists

No surprises here:

```
toList :: Vec n a -> [a]
toList Nil = []
toList (x :* xs) = x : toList xs
```



Zipping vectors

```
zipWith ::
  (a -> b -> c) -> Vec n a -> Vec n b -> Vec n c
```

All three vectors have the same length!

Zipping vectors

```
zipWith ::
  (a -> b -> c) -> Vec n a -> Vec n b -> Vec n c
```

All three vectors have the same length!

```
zipWith op Nil Nil =
Nil
zipWith op (x :* xs) (y :* ys) =
  (x 'op' y) :* zipWith op xs ys
```

No other cases are required, or even type-correct!

Vectors are functors

If zipWith works, fmap should be easy:

```
instance Functor (Vec n) where
fmap :: (a -> b) -> Vec n a -> Vec n b -- InstanceSigs
fmap f Nil = Nil
fmap f (x :* xs) = f x :* fmap f xs
```

In fact,

```
deriving instance Functor (Vec n)
```

just works.

More examples

Many types of questions

We have:

newtype Question = Q Text

Many types of questions

We have:

```
newtype Question = Q Text
```

We want:

```
data Question = Q Text QType
data QType = QYesNo | QQuant
```


Many types of answers ...

```
data Question = Q Text QType
data QType = QYesNo | QQuant
```

Now we need several answers as well:

New compatibility problems

Both vectors have the same length, but they're still not "compatible".

Leads to needless and repeated run-time checking.

Idea

Idea



Idea

Idea

```
data Question a = Q Text (QType a)

data QType :: * -> * where
    QYesNo :: QType Bool
    QQuant :: QType Int

data Answer :: * -> * where
    AYesNo :: Bool -> Answer Bool
    AQuant :: Int -> Answer Int
```


Singleton types

```
data QType :: * -> * where
    QYesNo :: QType Bool
    QQuant :: QType Int
```


Singleton types

```
data QType :: * -> * where
  QYesNo :: QType Bool
  QQuant :: QType Int
```

The types QType a are singleton types:

- For each a , there's at most one non-bottom value of typeQType a .
- Singleton types provide a term-level representative for types.
- Singleton types are quite a useful concept in type-level programming that we'll encounter frequently.

New problems

```
data Question a = 0 Text (QType a)
data OType :: * -> * where
 OYesNo :: OType Bool
 OQuant :: OType Int
data Answer :: * -> * where
 AYesNo :: Bool -> Answer Bool
 AQuant :: Int -> Answer Int
q :: Question Int
q = Q "How many type errors?" QQuant
a :: Answer Int
a = AQuant 0
```

Clearly compatible, but how to build lists or vectors?

Environments (and heterogeneous lists)

What we need:

- ▶ to put things of different types into a list-like structure,
- to keep track of the number of elements and their types in the type system.

What we need:

- to put things of different types into a list-like structure,
- to keep track of the number of elements and their types in the type system.

A **vector** is indexed by its **length**, but an **environment** is indexed by **a list of types corresponding to its elements**.

Promoted lists

Fortunately, Haskell allows us to promote the built-in list type.

Normal interpretation:

```
[] :: * -> *

[] :: [a]

(:) :: a -> [a] -> [a]
```


Promoted lists

Fortunately, Haskell allows us to promote the built-in list type.

Normal interpretation:

```
[] :: * -> *

[] :: [a]

(:) :: a -> [a] -> [a]
```

Promoted interpretation:

Here, the quotes are often needed for resolving syntactic ambiguity.

A heterogeneous list

```
data HList :: [*] -> * where
  HNil :: HList '[]
  HCons :: t -> HList ts -> HList (t ': ts)
infixr 2 'HCons'
```

Defined like this in the HList package.

A heterogeneous list

```
data HList :: [*] -> * where
  HNil :: HList '[]
  HCons :: t -> HList ts -> HList (t ': ts)
infixr 2 'HCons'
```

Defined like this in the HList package.

Allows heterogeneous lists, but gives us **too much** flexibility:

```
Q "How many type errors?" QQuant
'HCons' AQuant 0
'HCons' HNil
:: HList '[Question Int, Answer Int]
```

We want all elements to be questions, or all to be answers ...


```
data HList :: [*] -> * where
   HNil :: HList '[]
   HCons :: t -> HList ts -> HList (t ': ts)
```



```
data HList :: [*] -> * where
  HNil :: HList '[]
  HCons :: t -> HList ts -> HList (t ': ts)

data Questions :: [*] -> * where
  QNil :: Questions '[]
  QCons ::
   Question t -> Questions ts -> Questions (t ': ts)
```



```
data HList :: [*] -> * where
 HNil :: HList '[]
 HCons :: t -> HList ts -> HList (t ': ts)
data Questions :: [*] -> * where
 ONil :: Questions '[]
 OCons ::
   Ouestion t -> Ouestions ts -> Ouestions (t ': ts)
data Env :: [*] -> (* -> *) -> * where
 Nil :: Env '[] f
 (:*) :: f t -> Env ts f -> Env (t ': ts) f
```


Questions and Answers

It's now clear from the types that these aren't compatible.

Deriving instances for environments

This fails:

```
deriving instance Show (Env xs f)
```

And that's to be expected:

- in order to show an environment, we must know Show (f x) for all x that are elements of xs;
- but how do we express this?

Deriving instances for environments

This fails:

```
deriving instance Show (Env xs f)
```

And that's to be expected:

- in order to show an environment, we must know Show (f x) for all x that are elements of xs;
- but how do we express this?

For now, we can exploit that Question a and Answer a can be shown without knowing anything about a:

```
deriving instance Show (QType a)
deriving instance Show (Question a)
deriving instance Show (Answer a)
deriving instance Show (Env xs Question)
deriving instance Show (Env xs Answer)
```


Scoring with environments

```
type Scoring a = Answer a -> Score
```

does not allow us to form Env xs Scoring .

Scoring with environments

```
type Scoring a = Answer a -> Score
```

does not allow us to form Env xs Scoring .

```
newtype Scoring a = S (Answer a -> Score)
```


Scoring with environments

```
type Scoring a = Answer a -> Score
does not allow us to form Env xs Scoring.
newtype Scoring a = S (Answer a -> Score)
vesno :: Score -> Score -> Scoring Bool
vesno st sf = S (\((AYesNo b) -> if b then st else sf)
quantity :: (Int -> Int) -> Scoring Int
quantity f = S (\land (AQuant n) \rightarrow f n)
```


Scoring with environment

contd.

Scoring with environment

contd.

Direct definition of score:

Scoring with environment

contd.

Direct definition of score:

We had:

```
score ss as = L.sum (V.toList (V.zipWith ($) ss as))
```

Can we recover that?

From environments to lists

We cannot expect to turn arbitrary (heterogeneous) environments into (homogeneous) lists.

```
data Env :: [*] -> (* -> *) -> * where
Nil :: Env '[] f
(:*) :: f t -> Env ts f -> Env (t ': ts) f
```

From environments to lists

We cannot expect to turn arbitrary (heterogeneous) environments into (homogeneous) lists.

```
data Env :: [*] -> (* -> *) -> * where
Nil :: Env '[] f
(:*) :: f t -> Env ts f -> Env (t ': ts) f
```

But what if f is K a with:

```
data K a b = K {unK :: a}
```

An Env xs (K a) is actually homogeneous:

From environments to lists

We cannot expect to turn arbitrary (heterogeneous) environments into (homogeneous) lists.

```
data Env :: [*] -> (* -> *) -> * where
Nil :: Env '[] f
(:*) :: f t -> Env ts f -> Env (t ': ts) f
```

But what if f is K a with:

```
data K a b = K {unK :: a}
```

An Env xs (K a) is actually homogeneous:

```
toList :: Env xs (K a) -> [a]
toList Nil = []
toList (K x :* xs) = x : toList xs
```


Instantiating f to the identity type constructor I gives us back heterogeneous lists:

```
data I a = I {unI :: a}
data Env :: [*] -> (* -> *) -> * where
 Nil :: Env '[] f
  (:*) :: f t -> Env ts f -> Env (t ': ts) f
data HList :: [*] -> * where
 HNil :: HList '[]
 HCons :: t -> HList ts -> HList (t ': ts)
Fnv xs T \cong Hlist xs
```

For vectors:

```
zipWith :: (a -> b -> c) -> Vec n a -> Vec n b -> Vec n c
```

For environments:

```
zipWith :: ... -> Env xs f -> Env xs g -> Env xs h
```

Let's try to implement this (in the usual way):

Unfortunately, type inference does not work . . .

contd.

```
zipWith :: ... -> Env as f -> Env as g -> Env as h
zipWith op Nil Nil = Nil
zipWith op (x :* xs) (y :* ys) =
  (x 'op' y) :* zipWith op xs ys
```


contd.

```
zipWith :: ... -> Env as f -> Env as g -> Env as h
zipWith op Nil Nil = Nil
zipWith op (x :* xs) (y :* ys) =
  (x 'op' y) :* zipWith op xs ys
```

The function op is applied to

```
x :: f a -- for some 'a' that happens to be in 'as'
y :: g a -- for the same 'a'
```


contd.

```
zipWith :: ... -> Env as f -> Env as g -> Env as h
zipWith op Nil Nil = Nil
zipWith op (x :* xs) (y :* ys) =
  (x 'op' y) :* zipWith op xs ys
```

The function op is applied to

```
x :: f a -- for some 'a' that happens to be in 'as'
y :: g a -- for the same 'a'
```

While traversing the lists, op is called several times:

- the f and g are always the same,
- buth a changes.

So op should be polymorphic in a!


```
zipWith :: (f a -> g a -> h a) -- doesn't work
    -> Env as f -> Env as g -> Env as h
```

This is no good.

In a normal (rank-1) polymorphic type:

- the caller can choose all the quantified types,
- ▶ the callee must not assume anything about them.


```
zipWith :: (forall a. f a -> g a -> h a)
    -> Env as f -> Env as g -> Env as h
```

This is the correct type.

We need a rank-2 polymorphic type:

- the argument itself is polymorphic,
- ▶ the caller can't choose, but must provide a polymorphic function,
- the callee can use the argument at different types.

The complete definition

The scoring function revisited

Direct definition:

Old definition for vectors:

```
score ss as = L.sum (V.toList (V.zipWith ($) ss as))
```


The scoring function revisited

Direct definition:

Old definition for vectors:

```
score ss as = L.sum (V.toList (V.zipWith ($) ss as))
```

New definition with environments:

```
score ss as = L.sum (E.toList (E.zipWith combine ss as))
where
   combine :: Scoring a -> Answer a -> K Score a
   combine (S f) a = K (f a)
```


Pointing into structures

The situation

- ► We have an environment of questions and a compatible environment of answers.
- We want to check if there's any question containing a certain word.
- ▶ If so, we want to obtain the corresponding answer and show it.

The situation

- We have an environment of questions and a compatible environment of answers.
- We want to check if there's any question containing a certain word.
- ▶ If so, we want to obtain the corresponding answer and show it.

```
task :: Env as Question -> Env as Answer
    -> (Text -> Bool) -- instead of "containing a certain word"
    -> Maybe String -- there might be no such question
```


How would we do it normally?

```
task :: [Question] -> [Answer]
    -> (Text -> Bool)
    -> Maybe String

task qs as p = do
    i <- findIndex (\(Q txt _) -> p txt) qs
    let a = as !! i -- potential crash
    return (show a)
```

How would we do it normally?

```
task :: [Question] -> [Answer]
    -> (Text -> Bool)
    -> Maybe String
task qs as p = do
    i <- findIndex (\(Q txt _) -> p txt) qs
let a = as !! i -- potential crash
    return (show a)
```

Can we solve this similarly?

- We need a function like findIndex , but what should it return? An Int is not suitable.
- We need a function like (!!), ideally one that cannot crash. But depending on index, we get results of different types!

Pointers into environments

We are going to define a new datatype

```
Ptr :: [*] -> * -> *
```

such that Ptr xs x represents a "safe" pointer to an element of type x in an environment with signature "xs".

Pointers into environments

We are going to define a new datatype

```
Ptr :: [*] -> * -> *
```

such that Ptr xs x represents a "safe" pointer to an element of type x in an environment with signature "xs".

Observations and ideas:

- ▶ If the signature is empty, there should be **no** valid pointers.
- Otherwise, let's follow the inductive structure of lists: a pointer can either point at the head of an environment, or at the tail (which requires a pointer into the tail).

Pointers

```
data Ptr :: [*] -> * -> * where
  Head :: Ptr (x ': xs) x
  Tail :: Ptr xs y -> Ptr (x ': xs) y
```


Pointers

```
data Ptr :: [*] -> * -> * where
    PZero :: Ptr (x ': xs) x
    PSuc :: Ptr xs y -> Ptr (x ': xs) y
```


Pointers

```
data Ptr :: [*] -> * -> * where
    PZero :: Ptr (x ': xs) x
    PSuc :: Ptr xs y -> Ptr (x ': xs) y

pTwo :: Ptr (x ': y ': z ': zs) z
pTwo = PSuc (PSuc PZero)
```

We start indexing at 0.

Index 2 requires an environment of length at least 3.

Performing a lookup

```
(!!) :: Env as f -> Ptr as a -> f a

(x :* xs) !! PZero = x

(x :* xs) !! PSuc i = xs !! i
```

No cases for the empty environment needed. No crashes possible.

Finding a pointer

This is more problematic.

Let's start with **findIndex**:

Finding a pointer

This is more problematic.

Let's start with findIndex:

Now for environments:

We don't know the type of the resulting pointer:

```
findPtr ::
  (forall a. f a -> Bool) -> Env as f -> Maybe (Ptr as ...)
```

Yet we do have to provide a result type.

We don't know the type of the resulting pointer:

```
findPtr ::
  (forall a. f a -> Bool) -> Env as f -> Maybe (Ptr as ...)
```

Yet we do have to provide a result type.

```
data SomePtr :: [*] -> * where
   SomePtr :: Ptr as a -> SomePtr as
```

We don't know the type of the resulting pointer:

```
findPtr ::
  (forall a. f a -> Bool) -> Env as f -> Maybe (Ptr as ...)
```

Yet we do have to provide a result type.

```
data SomePtr :: [*] -> * where
   SomePtr :: Ptr as a -> SomePtr as
```

This is called an **existential** type.

When matching on a SomePtr as , we know **there exists** a type a such that ..., but we don't know the actual type.

We don't know the type of the resulting pointer:

```
findPtr ::
  (forall a. f a -> Bool) -> Env as f -> Maybe (Ptr as ...)
```

Yet we do have to provide a result type.

```
data SomePtr :: [*] -> * where
   SomePtr :: Ptr as a -> SomePtr as
```

This is called an **existential** type.

When matching on a SomePtr as , we know **there exists** a type a such that ..., but we don't know the actual type.

```
findPtr ::
  (forall a. f a -> Bool) -> Env as f -> Maybe (SomePtr as)
```


List version for comparison:

Version with environments:

Completing the task

```
task :: [Question] -> [Answer]
    -> (Text -> Bool)
    -> Maybe String
task qs as p = do
    i <- findIndex (\(Q txt _) -> p txt) qs
let a = as !! i -- potential crash
    return (show a)
```


Completing the task

```
task :: [Ouestion] -> [Answer]
     -> (Text -> Bool)
     -> Maybe String
task qs as p = do
  i \leftarrow findIndex (\( \downarrow txt \) \rightarrow p txt) qs
  let a = as !! i -- potential crash
  return (show a)
task :: Env as Question -> Env as Answer
     -> (Text -> Bool)
     -> Maybe String
task qs as p = do
  SomePtr i <- findPtr (\(0 txt \_) -> p txt) qs
 let a = as !! i -- safe
  return (show a)
```


Establishing invariants

Dealing with the unknown

The problem

In practice, we might want to read questions and answers from a file, the network, or interactively – how can we possibly benefit from all the type safety?

Dealing with the unknown

The problem

In practice, we might want to read questions and answers from a file, the network, or interactively – how can we possibly benefit from all the type safety?

In such a situation:

- ▶ We still have to perform a run-time check.
- But we have to perform it once, going from a weakly typed to a strongly typed value in the process.
- Once the additional invariants have been established, we don't need to check them again.

"Typechecking" a list of answers

An example

Let's assume we've obtained a **weakly typed** list of answers:

```
data WAnswer = WAYesNo Bool | WAQuant Int
```


"Typechecking" a list of answers

An example

Let's assume we've obtained a **weakly typed** list of answers:

```
data WAnswer = WAYesNo Bool | WAQuant Int
```

Testing well-formedness in a "normal" setting:

```
chkAnswers :: [WQuestion] -> [WAnswer] -> Bool
```


"Typechecking" a list of answers

An example

Let's assume we've obtained a **weakly typed** list of answers:

```
data WAnswer = WAYesNo Bool | WAQuant Int
```

Testing well-formedness in a "normal" setting:

```
chkAnswers :: [WQuestion] -> [WAnswer] -> Bool
```

In our setting, this becomes:

Note: Bool is replaced with something much more informative!

Implementing chkAnswers

Implementing chkAnswers

```
chkAnswers :: Env as Question -> [WAnswer]
           -> Maybe (Env as Answer)
chkAnswers Nil [] = Just Nil
chkAnswers (q : * qs) (a : as) = (:*) < $ > chkAnswer q a
                                   <*> chkAnswers qs as
chkAnswers
                             = Nothing
chkAnswer :: Question a -> WAnswer -> Maybe (Answer a)
chkAnswer (Q _ QYesNo) (WAYesNo b) = Just (AYesNo b)
chkAnswer (O _ QQuant) (WAQuant n) = Just (AQuant n)
chkAnswer
                                  = Nothing
```


Kind polymorphism

Yet more types of questions

Let's assume we want to add another question type for which the answer is also an Int:

```
data QType :: * -> * where
  QYesNo :: QType Bool
  QQuant :: QType Int
  QArith :: QType Int

data Answer :: * -> * where
  AYesNo :: Bool -> Answer Bool
  AQuant :: Int -> Answer Int
  AArith :: Int -> Answer Int
```

While this works, it opens up the possibility for incompatibility: we could line up a QQuant with an AArith .

Why *?

```
data QType :: * -> * where
   QYesNo :: QType Bool
   QQuant :: QType Int
   QArith :: QType Int

data Answer :: * -> * where
   AYesNo :: Bool -> Answer Bool
   AQuant :: Int -> Answer Int
   AArith :: Int -> Answer Int
```

Why *

```
data QType :: * -> * where
  QYesNo :: QType Bool
  QQuant :: QType Int
  QArith :: QType Int

data Answer :: * -> * where

  AYesNo :: Bool -> Answer Bool
  AQuant :: Int -> Answer Int
  AArith :: Int -> Answer Int
```

There's not really a need for the index of Question , QType and Answer to be of kind * .

In fact, there are many types a :: * for which QType a or Answer a are uninhabited anyway.

Promotion again

```
data QType = QYesNo | QQuant | QArith

data Answer :: QType -> * where

AYesNo :: Bool -> Answer QYesNo

AQuant :: Int -> Answer QQuant

AArith :: Int -> Answer QArith
```


Promotion again

```
data QType = QYesNo | QQuant | QArith

data Answer :: QType -> * where

AYesNo :: Bool -> Answer QYesNo
AQuant :: Int -> Answer QQuant
AArith :: Int -> Answer QArith
```

So far, so good – but what about Question?

Adapting Question

```
data Question (a :: QType) = Q Text...
```

A phantom type is not enough.

We need a GADT to match on, so that we can determine the type at runtime.

Adapting Question

```
data Question (a :: QType) = Q Text...
```

A phantom type is not enough.

We need a GADT to match on, so that we can determine the type at runtime.

Let's introduce a **singleton type** for QType again:

```
data SQType :: QType -> * where
   SQYesNo :: SQType QYesNo
   SQQuant :: SQType QQuant
   SQArith :: SQType QArith
```



```
data Question (a :: QType) = Q Text...
```

A phantom type is not enough.

We need a GADT to match on, so that we can determine the type at runtime.

Let's introduce a **singleton type** for QType again:

```
data SQType :: QType -> * where
   SQYesNo :: SQType QYesNo
   SQQuant :: SQType QQuant
   SQArith :: SQType QArith

data Question (a :: QType) = Q Text (SQType a)
```


Environments?

```
data Env :: [*] -> (* -> *) -> * where
Nil :: Env '[] f
(:*) :: f t -> Env ts f -> Env (t ': ts) f
```

With

```
Question :: QType -> *
```

the type

```
Env '[QYesNo, QQuant] Question
```

is no longer kind-correct.

Do we need a new Env type for every kind?

Kind-polymorphic environments

In fact, Env works unchanged at a more general kind:

```
data Env :: [k] -> (k -> *) -> * where
Nil :: Env '[] f
(:*) :: f t -> Env ts f -> Env (t ': ts) f
```


Kind-polymorphic environments

In fact, Env works unchanged at a more general kind:

```
data Env :: [k] -> (k -> *) -> * where
Nil :: Env '[] f
(:*) :: f t -> Env ts f -> Env (t ': ts) f
```

The kind of (->) is *->*->*. However, elements t of the list do not appear directly, but only as an argument to f.

Kind-polymorphic environments

In fact, Env works unchanged at a more general kind:

```
data Env :: [k] -> (k -> *) -> * where
  Nil :: Env '[] f
  (:*) :: f t -> Env ts f -> Env (t ': ts) f
```

The kind of (->) is * -> * -> *.

However, elements t of the list do not appear directly, but only as an argument to f.

With the generalized kind, we can keep using environments as before.

More kind polymorphism

Other types we've encountered do in fact have more general kinds:

```
Ptr :: [k] -> k -> *
SomePtr :: [k] -> *
K :: *-> k -> *
```


Implementation of GADTs

System FC

GHC's Core language is called System FC, An explicitly typed lambda calculus with **kinds** and **equality constraints**.

System FC

GHC's Core language is called System FC, An explicitly typed lambda calculus with **kinds** and **equality constraints**.

Equality constraints also appear in the surface language:

a ~ b

is a constraint that requires a and b to be equal.

System FC

GHC's Core language is called System FC, An explicitly typed lambda calculus with **kinds** and **equality constraints**.

Equality constraints also appear in the surface language:

a ~ b

is a constraint that requires a and b to be equal.

Class constraints are translated to dictionary arguments in Core (and at run-time),

whereas **equality constraints** appear in Core, but are not present at run-time.

GADTs with equality constraints

```
data Env :: [k] -> (k -> *) -> * where
Nil :: Env '[] f
(:*) :: f t -> Env ts f -> Env (t ': ts) f
```

can also be written as

or even as


```
data Vec :: Nat -> * -> * where
  Nil :: Vec Zero a
  (:*) :: a -> Vec n a -> Vec (Suc n) a
```

```
data Vec :: Nat -> * -> * where
  Nil :: (n ~ Zero ) => Vec n a
  (:*) :: (n ~ Suc n') => a -> Vec n' a -> Vec n a
```



```
data Vec :: Nat -> * -> * where
  Nil :: (n ~ Zero ) => Vec n a
  (:*) :: (n ~ Suc n') => a -> Vec n' a -> Vec n a

fmap :: (a -> b) -> Vec n a -> Vec n b
fmap f Nil = Nil
fmap f (x :* xs) = f x :* fmap f xs
```



```
data Vec :: Nat -> * -> * where
  Nil :: (n ~ Zero ) => Vec n a
  (:*) :: (n ~ Suc n') => a -> Vec n' a -> Vec n a

fmap :: (a -> b) -> Vec n a -> Vec n b
fmap f Nil = Nil
fmap f (x :* xs) = f x :* fmap f xs

In the first case, n ~ Zero .
```

```
data Vec :: Nat -> * -> * where
 Nil :: (n ~ Zero ) => Vec n a
  (:*) :: (n ~ Suc n') => a -> Vec n' a -> Vec n a
fmap :: (a \rightarrow b) \rightarrow Vec n a \rightarrow Vec n b
fmap f Nil = Nil
fmap f(x : * xs) = f x : * fmap f xs
In the second case, n ~ Suc n':
              xs :: Vec n'
                               а
       fmap f xs :: Vec n'
f x :* fmap f xs :: Vec (Suc n') b
```



```
data Vec :: Nat -> * -> * where
  Nil :: (n ~ Zero ) => Vec n a
  (:*) :: (n ~ Suc n') => a -> Vec n' a -> Vec n a

fmap :: (a -> b) -> Vec n a -> Vec n b
fmap f Nil = Nil
fmap f (x :* xs) = f x :* fmap f xs

In the second case, n ~ Suc n' :
```

```
xs :: Vec n' a fmap f xs :: Vec n' b f x :* fmap f <math>xs :: Vec n b
```


GADTs and type inference

Consider:

```
data X :: * -> * where
   C :: Int -> X Int
   D :: X a
f (C n) = [n]
f D = []
```

What is the type of f?

GADTs and type inference

Consider:

```
data X :: * -> * where
   C :: Int -> X Int
   D :: X a
f (C n) = [n]
f D = []
```

What is the type of f?

```
f :: X a -> [Int]
f :: X a -> [a]
```

None of the two types is an instance of the other.

GADTs and type inference

Consider:

```
data X :: * -> * where
   C :: Int -> X Int
   D :: X a

f (C n) = [n]
f D = []
```

What is the type of f?

```
f :: X a -> [Int]
f :: X a -> [a]
```

None of the two types is an instance of the other.

Functions matching on GADTs do not necessarily have a **principal type**. GHC requires type signatures for such functions.

Producers and singletons

Replicating vectors (or environments)

We've seen a number of functions on GADTs that consume them by pattern matching, like:

```
fmap :: (a -> b) -> Vec n a -> ...
zipWith :: (a -> b -> c) -> Env xs f -> Env xs g -> ...
toList :: Env xs (K a) -> ...
findPtr :: (forall a. f a -> Bool) -> Env as f -> ...
(!!) :: Env as f -> Ptr as a -> ...
score :: Env xs Scoring -> Env xs Answer -> ...
task :: Env as Question -> Env as Answer -> ...
chkAnswers :: Env as Question -> [WAnswer] -> ...
```

But can we also do something like

```
replicate :: Int -> a -> [a]
```

on vectors or environments?

Using an existential type

Option 1

```
data SomeVec :: * -> * where -- similar to SomePtr
   SomeVec :: Vec n a -> SomeVec a
```


Using an existential type

Option 1

```
data SomeVec :: * -> * where -- similar to SomePtr
   SomeVec :: Vec n a -> SomeVec a

replicate :: Int -> a -> SomeVec a

replicate 0 x = SomeVec Nil

replicate n x = case replicate (n - 1) x of
   SomeVec xs -> SomeVec (x :* xs)
```



```
data SomeVec :: * -> * where -- similar to SomePtr
   SomeVec :: Vec n a -> SomeVec a

replicate :: Int -> a -> SomeVec a

replicate 0 x = SomeVec Nil

replicate n x = case replicate (n - 1) x of
   SomeVec xs -> SomeVec (x :* xs)
```

Or even:

```
fromList :: [a] -> SomeVec a
fromList = ... -- exercise

replicate :: Int -> a -> SomeVec a
replicate n x = fromList (L.replicate n x)
```


Using another vector as template Option 2

```
replicate :: Vec n b -> a -> Vec n a
replicate Nil x = Nil
replicate (_ :* ys) x = x :* replicate ys x
```

Or:

```
replicate ys x = fmap (const x) ys
```


Using another vector as template Option 2

```
replicate :: Vec n b -> a -> Vec n a
replicate Nil x = Nil
replicate (_ :* ys) x = x :* replicate ys x
```

Or:

```
replicate ys x = fmap (const x) ys
```

But we don't need the elements of the input vector.

What happens if we strip the elements from the Vec type?

Singleton natural numbers

```
data Vec :: Nat -> * -> * where
  Nil :: Vec Zero a
  (:*) :: a -> Vec n a -> Vec (Suc n) a

data SNat :: Nat -> * where
  SZero :: SNat Zero
  SSuc :: SNat n -> SNat (Suc n)
```


Singleton natural numbers

```
data Vec :: Nat -> * -> * where
 Nil :: Vec 7ero a
 (:*) :: a -> Vec n a -> Vec (Suc n) a
data SNat :: Nat -> * where
 SZero :: SNat Zero
 SSuc :: SNat n -> SNat (Suc n)
length :: Vec n a -> SNat n
length Nil = SZero
length (_ :* xs) = SSuc (length xs)
```


Singletons with class

For singletons, there's only / at most one value per type. Can we **use the type system** to produce the value?

Singletons with class

For singletons, there's only / at most one value per type. Can we **use the type system** to produce the value?

```
class SNatI (n :: Nat) where
    sNat :: SNat n
instance SNatI Zero where
    sNat = SZero
instance SNatI n => SNatI (Suc n) where
    sNat = SSuc sNat
```


Option 3:

Now:

```
replicate' :: SNatI n => a -> Vec n a
replicate' = replicate sNat
```

Option 3:

Now:

```
replicate' :: SNatI n => a -> Vec n a replicate' = replicate sNat
```

Example:

```
> zipWith (+) (replicate' 1) (1 :* 2 :* 3 :* Nil) 2 :* (3 :* (4 :* Nil))
```


An example

Consider the following list-based code:

```
sameLength :: [a] -> [b] -> Bool
sameLength xs ys = length xs == length ys
```

How can we properly rewrite this to a function on vectors?

```
sameLength :: Vec m a -> Vec n a -> ...
sameLength xs ys = ...
```


An example

Consider the following list-based code:

```
sameLength :: [a] -> [b] -> Bool
sameLength xs ys = length xs == length ys
```

How can we properly rewrite this to a function on vectors?

```
sameLength :: Vec m a -> Vec n a -> ...
sameLength xs ys = ...
```

Using a Bool as a result type is not suitable:

```
if sameLength v1 v2 then zipWith op v1 v2 else...
```

fails, but we'd like it to work.

Equality on its own

Using a GADT, we can define a datatype that captures an equality constraint:

```
data (:~:) :: k -> k -> * where
  Refl :: a :~: a -- or: (a ~ b) => a :~: b
```

This is available (since GHC 7.8) in Data.Type.Equality.

Equality on its own

Using a GADT, we can define a datatype that captures an equality constraint:

```
data (:~:) :: k -> k -> * where
  Refl :: a :~: a -- or: (a ~ b) => a :~: b
```

This is available (since GHC 7.8) in Data.Type.Equality.

Now if we have

```
sameLength :: Vec m a -> Vec n a -> Maybe (m :~: n)
```

we can do

```
case sameLength v1 v2 of
  Just Refl -> zipWith op v1 v2
Nothing -> ...
```


Completing the definition of sameLength

```
sameLength :: Vec m a -> Vec n a -> Maybe (m :~: n)
sameLength xs ys = length xs ==? length ys
```

Recall that length returns an SNat.


```
sameLength :: Vec m a -> Vec n a -> Maybe (m :~: n)
sameLength xs ys = length xs ==? length ys
```

Recall that length returns an SNat.

So we need:

Decidable equality

The function (==?) is also called **semi-decidable equality**, because we return a **proof of equality** on success.

In Data.Type.Equality, there's a class for this:

```
class TestEquality (f :: k -> *) where
  testEquality :: f a -> f b -> Maybe (a :~: b)
```


Decidable equality

The function (==?) is also called **semi-decidable equality**, because we return a **proof of equality** on success.

In Data. Type. Equality , there's a class for this:

```
class TestEquality (f :: k -> *) where
  testEquality :: f a -> f b -> Maybe (a :~: b)

instance TestEquality SNat where
  testEquality = (==?)
```


Properties of equality

GHC's is an equivalence relation.

We can make it explicit that :~: is as well:

```
sym :: (a :~: b) -> (b :~: a)
sym Refl = Refl
trans :: (a :~: b) -> (b :~: c) -> (a :~: c)
trans Refl Refl = Refl
```

Reflexivity is given by Refl itself.

Properties of equality

GHC's is an equivalence relation.

We can make it explicit that :~: is as well:

```
sym :: (a :~: b) -> (b :~: a)
sym Refl = Refl
trans :: (a :~: b) -> (b :~: c) -> (a :~: c)
trans Refl Refl = Refl
```

Reflexivity is given by Refl itself.

```
castWith :: (a :~: b) -> a -> b
castWith Refl x = x
gcastWith :: (a :~: b) -> (a ~ b => r) -> r
gcastWith Refl x = x
```


Type families

Appending two vectors

```
(++) :: [a] -> [a] -> [a]

[] ++ ys = ys

(x : xs) ++ ys = x : (xs ++ ys)
```

For vectors?

Appending two vectors

```
(++) :: [a] -> [a] -> [a]

[] ++ ys = ys

(x : xs) ++ ys = x : (xs ++ ys)
```

For vectors?

```
(++) :: Vec m a -> Vec n a -> Vec...a

Nil ++ ys = ys

(x :* xs) ++ ys = x :* (xs ++ ys)
```

How to complete the type?

Natural number addition

```
(+) :: Nat -> Nat -> Nat

Zero + n = n

Suc m + n = Suc (m + n)
```


Natural number addition

```
(+) :: Nat -> Nat -> Nat

Zero + n = n

Suc m + n = Suc (m + n)
```

In a dependently-typed language:

```
(++) :: Vec a m -> Vec a n -> Vec a (m + n)
```

Unfortunately, we cannot promote functions.

Use a GADT

GADTs express **relations** on the type level. Every function is a relation ...

Use a GADT

GADTs express **relations** on the type level.

Every function is a relation ...

Use a GADT

GADTs express **relations** on the type level.

Every function is a relation ...

While interesting (and perhaps even useful), it's quite inconvenient to have to provide a Plus argument by hand.

Type family

```
(+) :: Nat -> Nat -> Nat
Zero + n = n
Suc m + n = Suc (m + n)

type family (+) (m :: Nat) (n :: Nat) :: Nat where
Zero + n = n
Suc m + n = Suc (m + n)
```


Type family

```
(+) :: Nat -> Nat -> Nat
7 \text{ero} + n = n
Suc m + n = Suc (m + n)
type family (+) (m :: Nat) (n :: Nat) :: Nat where
 Zero + n = n
  Suc m + n = Suc (m + n)
(++) :: Vec m a -> Vec n a -> Vec (m + n) a
Nil
         ++ ys = ys
(x :* xs) ++ ys = x :* (xs ++ ys)
```



Let's look at the types

Let's look at the types

```
data Vec :: Nat -> * -> * where
 Nil :: (n ~ Zero ) => Vec n a
  (:*) :: (n ~ Suc n') => a -> Vec n' a -> Vec n a
type family (+) (m :: Nat) (n :: Nat) :: Nat where
 7 \text{ero} + n = n
 Suc m + n = Suc (m + n)
(++) :: Vec m a -> Vec n a -> Vec (m + n) a
Nil ++ vs = vs
(x :* xs) ++ ys = x :* (xs ++ ys)
```

```
In the first case, m \sim Zero:
```

```
ys :: Vec a n
~ Vec a (Zero + n) -- type family
~ Vec a (m + n) -- m ~ Zero
```


Let's look at the types

```
data Vec :: Nat -> * -> * where
 Nil :: (n ~ Zero ) => Vec n a
  (:*) :: (n ~ Suc n') => a -> Vec n' a -> Vec n a
type family (+) (m :: Nat) (n :: Nat) :: Nat where
 Zero + n = n
 Suc m + n = Suc (m + n)
(++) :: Vec m a -> Vec n a -> Vec (m + n) a
Nil ++ vs = vs
(x :* xs) ++ ys = x :* (xs ++ ys)
In the second case, m ~ Suc m':
x :* (xs ++ ys) :: Vec a Suc (m' + n)
                ~ Vec a (Suc m' + n) -- type family
                \sim Vec a (m + n) -- m \sim Suc m'
```


Proving properties

Unfortunately, this does not type-check. Why?

Two simple properties

Using the properties



More on type families

Associated types

Type families can also be associated with a class:

```
class Sequence (as :: *) where
  type Elt as :: *
  filter :: (Elt as -> Bool) -> as -> as
  ...
```

Associated types

Type families can also be associated with a class:

```
class Sequence (as :: *) where
 type Elt as :: *
 filter :: (Elt as -> Bool) -> as -> as
instance Sequence [a] where
 type Elt [a] = a
 filter = L.filter
instance Sequence Text where
 type Elt Text = Char
 filter = T.filter
```

Mainly a syntactic difference.

Type family implementation

Type families introduce new symbols and associated equality constraints to System FC:

```
type family (+) (m :: Nat) (n :: Nat) :: Nat
type instance Zero + n = n
type instance Suc m + n = Suc (m + n)
```

Type family implementation

Type families introduce new symbols and associated equality constraints to System FC:

```
type family (+) (m :: Nat) (n :: Nat) :: Nat
type instance Zero + n = n
type instance Suc m + n = Suc (m + n)

introduces (+) with

Zero + n ~ n
Suc m + n ~ Suc (m + n)
```

Type family implementation

Type families introduce new symbols and associated equality constraints to System FC:

```
type family (+) (m :: Nat) (n :: Nat) :: Nat
type instance Zero + n = n
type instance Suc m + n = Suc (m + n)
introduces (+) with

Zero + n ~ n
Suc m + n ~ Suc (m + n)
```

Type families:

- must always be fully applied.
- are open.
- must not have overlapping cases (but since GHC 7.8, closed type families exist).

Different representations of data

An example

```
class Compactable (a :: *) where
  type Compact a :: *
  compact :: a -> Compact a
  uncompact :: Compact a -> a
  size :: Compact a -> Int

instance Compactable Int
instance Compactable a => Compactable [a]
```


A strange error

```
Couldn't match type 'Compact a' with 'Compact a0'

Expected type: 'Compact a -> Int'

Actual type: 'Compact a0 -> Int'

NB: 'Compact' is a type function, and may not be injective

The type variable 'a0' is amgiguous

In the ambiguity check for 'size'

To defer the ambiguity check to use sites,

enable AllowAmbiguousTypes
```

We can try enabling AllowAmbiguousTypes, but then ...

A strange error

contd.

```
test = size (compact [1, 2, 3])
```



```
test = size (compact [1, 2, 3])

Couldn't match expected type 'Compact a0'
  with actual type 'Compact [t0]'

NB: 'Compact' is a type function, and may not be injective
The type variables 'a0', 't0' are ambiguous
In the first argument of 'size', namely '(compact [1, 2, 3])'
In the expression: size (compact [1, 2, 3])
```



```
test = size (compact [1, 2, 3])

Couldn't match expected type 'Compact a0'
  with actual type 'Compact [t0]'

NB: 'Compact' is a type function, and may not be injective
The type variables 'a0', 't0' are ambiguous
In the first argument of 'size', namely '(compact [1, 2, 3])'
In the expression: size (compact [1, 2, 3])

test = size (compact ([1, 2, 3] :: [Int]) :: Compact [Int])
```

is not improving anything.

Explaining the error

Explaining the error

So we have to unify:

```
Compact [Int] ~ Compact a
```

It seems like a ~ [Int] is an obvious solution, but is it the only one?

Type families need not be injective

```
type Compact [a] = Array Int (Compact a)
type Compact Int = Int

newtype Count = Count Int
type Compact Count = Int
```


Type families need not be injective

```
type Compact [a] = Array Int (Compact a)
type Compact Int = Int

newtype Count = Count Int
type Compact Count = Int
```

Now:

```
Compact [Int] ~ Array Int Int ~ Compact [Count]
```


Injectivity

```
In general, a function f is called injective if f x ~ f y implies x ~ y .
```


Injectivity

```
In general, a function f is called injective if f \times f y implies f \times f y.
```

Datatypes (both **data** and **newtype**) are **always** injective, but type families (and type synonyms) are generally not.

Recognizing problematic functions

```
class Compactable (a :: *) where
  type Compact a :: *
  compact :: a -> Compact a
  uncompact :: Compact a -> a
  size :: Compact a -> Int
```


Recognizing problematic functions

```
class Compactable (a :: *) where
  type Compact a :: *
  compact :: a -> Compact a
  uncompact :: Compact a -> a
  size :: Compact a -> Int
```

In <u>size</u>, the type variable <u>a</u> appears only as an argument to a type family – it seems impossible to use this function in practice.

Making the type family injective

Solution 1

```
class Compactable (a :: *) where
  type Compact a = (r :: *) | r -> a
  compact :: a -> Compact a
  uncompact :: Compact a -> a
  size :: Compact a -> Int

instance Compactable Int
instance Compactable a => Compactable [a]

test = size (compact [1, 2, 3] :: Compact [Int])
```


Making the type family injective

Solution 1

```
class Compactable (a :: *) where
  type Compact a = (r :: *) | r -> a
  compact :: a -> Compact a
  uncompact :: Compact a -> a
  size :: Compact a -> Int

instance Compactable Int
instance Compactable a => Compactable [a]

test = size (compact [1, 2, 3] :: Compact [Int])
```

The function test is now accepted. GHC enforces injectivity.

Straight-forward, but not all type families are injective, so not always an option. Requires GHC 8; syntax may be subject to change.

Redesigning the class hierarchy

Solution 2

```
class Size (Compact a) => Compactable (a :: *) where
  type Compact a :: *
  compact :: a -> Compact a
  uncompact :: Compact a -> a

class Size a where
  size :: a -> Int
```

Probably the best solution in this situation.

Redesigning the class hierarchy

Solution 2

```
class Size (Compact a) => Compactable (a :: *) where
  type Compact a :: *
  compact :: a -> Compact a
  uncompact :: Compact a -> a

class Size a where
  size :: a -> Int
```

Probably the best solution in this situation.

Now

```
test = size (compact ([1, 2, 3] :: [Int]))
```

typechecks as long as Size (Compact [Int]) holds.

Solution 3

```
data Proxy (a :: k) = Proxy
class Compactable (a ::*) where
  type Compact a ::*
  compact :: a -> Compact a
  uncompact :: Compact a -> a
  size :: Proxy a -> Compact a -> Int
```

The additional argument is annoying, but this always works.

```
test = size (Proxy :: Proxy [Int])
  (compact ([1, 2, 3] :: [Int]))
```


Solution 3

```
data Proxy (a :: k) = Proxy
class Compactable (a ::*) where
  type Compact a ::*
  compact :: a -> Compact a
  uncompact :: Compact a -> a
  size :: Proxy a -> Compact a -> Int
```

The additional argument is annoying, but this always works.

```
test = size (Proxy :: Proxy [Int])
  (compact ([1, 2, 3] :: [Int]))

data Tagged (a :: k) b = Tagged b
size :: Tagged a (Compact a) -> Int -- another option
```


Using explicit type application

```
class Compactable (a :: *) where
  type Compact a :: *
  compact :: a -> Compact a
  uncompact :: Compact a -> a
  size :: Compact a -> Int

test = size @[Int]
  (compact ([1, 2, 3] :: [Int]))
```

Requires GHC 8.

Solution 4

Writing an inverse

Solution 4

If the function actually is injective, we can "prove" it by writing an inverse:

Extra work to define Uncompact.

Writing an inverse

Solution 4

If the function actually is injective, we can "prove" it by writing an inverse:

Extra work to define Uncompact .

But now, by applying Uncompact, we can actually solve

Compact a ~ Compact b

Data families

Next to

```
type family X...
```

there's also

```
data family X...
```

that allows

```
data instance...
newtype instance...
```

(And associated datatypes correspondingly.)

Tempting because they're always injective – not useful if you work with types that already exist.

Generalizing singleton types

We can use a **kind-indexed** data family to make singletons less ad-hoc.

Before:

```
data SNat :: Nat -> * where
   SZero :: SNat Zero
   SSuc :: SNat n -> SNat (Suc n)
```

Generalizing singleton types

We can use a kind-indexed data family to make singletons less ad-hoc.

Before:

```
data SNat :: Nat -> * where
   SZero :: SNat Zero
   SSuc :: SNat n -> SNat (Suc n)
```

Now:

```
data family Sing (a :: k)
data instance Sing (n :: Nat) where
    SZero :: Sing Zero
    SSuc :: Sing n -> Sing (Suc n)
```


Constraint kinds

Classes have kinds

```
Eq :: * -> Constraint
Functor :: (* -> *) -> Constraint
MonadState :: * -> (* -> *) -> Constraint
```


Classes have kinds

```
Eq :: * -> Constraint
Functor :: (* -> *) -> Constraint
MonadState :: * -> (* -> *) -> Constraint
```

By viewing constraints as kind, we can e.g.

- define class synonyms using type ,
- parameterize types and classes over constraints,
- define constraint families.

Restricted monads

The classic example

Sets as defined in Data.Set aren't monads:

```
returnSet :: a -> Set a
bindSet :: Ord a => Set a -> (a -> Set b) -> Set b
```

The Ord constraint does not fit.

Sets as defined in Data.Set aren't monads:

```
returnSet :: a -> Set a
bindSet :: Ord a => Set a -> (a -> Set b) -> Set b
```

The Ord constraint does not fit.

```
class RMonad (c :: * -> Constraint) (m :: * -> *) where
  return :: c a => a -> m a
  (>>=) :: c a => m a -> (a -> m b) -> m b
instance RMonad Ord Set
```


Showing environments

```
type family
  All (c :: k -> Constraint) (xs :: [k]) :: Constraint
  where
  All c '[] = ()
  All c (x ': xs) = (c x, All c xs)

type family Map (f :: k1 -> k2) (xs :: [k1]) :: [k2]
  where
  Map f '[] = '[]
  Map f (x ': xs) = (f x) ': (Map f xs)
```


Showing environments

```
type family
 All (c :: k -> Constraint) (xs :: [k]) :: Constraint
 where
 All c '[] = ()
 All c (x ': xs) = (c x, All c xs)
type family Map (f :: k1 -> k2) (xs :: [k1]) :: [k2]
 where
 Map f'[] = '[]
 Map f(x': xs) = (f x)': (Map f xs)
data Env :: [*] -> (* -> *) -> * where
 Nil :: Env '[] f
 (:*) :: f t -> Env ts f -> Env (t ': ts) f
deriving instance All Show (Map f xs) => Show (Env xs f)
```


What we haven't (explicitly) covered

- Functional dependencies
- ► Type literals
- Higher-order type families
- Indexed / parameterized monads
- Open type families
- ► Roles
- **.** . . .

