
Using STM for modular concurrency
An industrial experience report on Software Transactional Memory

Duncan Coutts
Haskell Symposium 2020 — Copyright © 2020 Well-Typed LLP

Well-Typed
The Haskell Consultants



Summary

Concurrency is still hard

STM does make it easier

STM enables some useful and interesting concurrency patterns

Well-Typed



Design motivation



Overload design and backpressure
As a consultant I ask:
Q: what is your design for system overload?
Ummm. . .

Q: what does your demand vs throughput curve look like?

00

The good

00

The bad

00

The ugly

Wouldn’t it be nice if our basic design patterns gave us good results?

Well-Typed



Project context

Commercial context
I a blockchain and a crypto-currency
I a top 10 crypto-currency (by market capitalisation)

Technical context
I a from-scratch blockchain implementation in Haskell
I interacting networked nodes, lots of concurrency
I design assumption that ‘they really are out to get you’

Well-Typed



Background ideas

Ideas from previous projects working with networking experts
I Queues often make things worse in overload situations and are a
source of timing variability

I Pull-based designs are often better than push-based
I Aim for designs that do not become less efficient under load
I ‘∆Q’ performance algebra as a intellectual framework

Initial design ideas for Cardano
I Exclusively use STM for concurrency
I Aim for a mostly-queueless design
I Worry about worst-case resource consumption, not average-case

Well-Typed



An STM refresher



The STM primitives

data STM a
instance Monad STM
data TVar
newTVar :: a→ STM (TVar a)
readTVar :: TVar a→ STM a
writeTVar :: TVar a→ a→ STM ()

atomically :: STM a→ IO a

Operations on transactional variables
Concurrent atomic transactions are serialisable

Well-Typed



The STM primitives

Blocking is fundamental to communication between threads.

retry :: STM a
orElse :: STM a→ STM a→ STM a
instance Alternative STM where
empty = retry
(<|>) = orElse

I Using retry we can block on any condition, depending on
variables we have read.

I Using orElse we can block on alternative STM actions.

This combination is very flexible and allows modularity.

Well-Typed



Blocking on conditions
Using retry we can block on any condition, depending on variables
we have read.
do x← readTVar xv
guard (p x) -- uses retry via Alternative’s empty
y← readTVar yv
return (x, y)

The retry suspends the thread until any of the variables read up to
this point in the transaction are written to by other threads.
The transaction will be re-run any time after any variable is written.

Corollary
I Defer reads not needed for blocking conditions.
I No guarantee of observing every change in a variable.

Well-Typed



Blocking on alternatives

Using orElse we can block on alternative STM actions.
firstToFinish = waitForThis

<|> waitForThat
<|> waitForTheOther

Each of these can read variables and use conditions.
Allows building up complex conditions in amodular way.
Similarities to guarded alternatives from process calculi.

Well-Typed



Blocking on all the things!

Most languages and OSs do not have a good unified framework for
waiting on any combination of events.
(libraries like libev try to paper over the cracks.)
In Haskell, STM should be that unified framework
X inter-thread synchronisation
∼ waiting on timeouts
∼ waiting on I/O

Little-known STM feature to allow waiting on timeouts
registerDelay :: Int→ IO (TVar Bool)

Waiting on I/O needs an extra thread and inter-thread synchronisation

Well-Typed



STM based concurrency patterns



Design thought process

Component Component Component

Component

Thread Thread Thread Thread

TVar a TVar a TVar a TVar a

Thread

STM a STM a STM a STM a

I Unidirectional data flow for each TVar
I Associate TVars with the components that write to them
I Expose TVar reads as opaque STM queries
Think of such STM queries as time-varying observations

I Does not matter if components are ‘active’ or ‘passive’

Well-Typed



Design thought process

Component Component Component

Component

Thread Thread Thread Thread

TVar a TVar a TVar a TVar a

Thread

STM a STM a STM a STM a

I Unidirectional data flow for each TVar

I Associate TVars with the components that write to them
I Expose TVar reads as opaque STM queries
Think of such STM queries as time-varying observations

I Does not matter if components are ‘active’ or ‘passive’

Well-Typed



Design thought process
Component Component Component

Component

Thread Thread Thread Thread

TVar a TVar a TVar a TVar a

Thread

STM a STM a STM a STM a

I Unidirectional data flow for each TVar
I Associate TVars with the components that write to them

I Expose TVar reads as opaque STM queries
Think of such STM queries as time-varying observations

I Does not matter if components are ‘active’ or ‘passive’

Well-Typed



Design thought process
Component Component Component

Component

Thread Thread Thread Thread

TVar a TVar a TVar a TVar a

Thread

STM a STM a STM a STM a

I Unidirectional data flow for each TVar
I Associate TVars with the components that write to them
I Expose TVar reads as opaque STM queries
Think of such STM queries as time-varying observations

I Does not matter if components are ‘active’ or ‘passive’

Well-Typed



Design thought process
Component Component Component

Component

Thread Thread Thread Thread

TVar a TVar a TVar a TVar a

Thread

STM a STM a STM a STM a

I Unidirectional data flow for each TVar
I Associate TVars with the components that write to them
I Expose TVar reads as opaque STM queries
Think of such STM queries as time-varying observations

I Does not matter if components are ‘active’ or ‘passive’

Well-Typed



State observation pattern
Component Component Component

Component

Thread Thread Thread Thread

TVar a TVar a TVar a TVar a

Thread

STM a STM a STM a STM a

Expose STM a observables for other components
I No need to know about, or coordinate, with consumers
I No need to expose any TVar hence read-only
I Preserves abstraction boundaries
I Can read multiple variables and project only public parts
I Example: TVar (Map Id (TVar X)) exposed as STM (Map Id X)

Well-Typed



Observing relevant changes
STM a STM a STM a

Thread

Use combinations of STM a observables and act on relevant changes
I No implicit notion of change. It is not a queue of diffs.
I Use an explicit fingerprint to identify changes of interest
I Not all changes are relevant

- read relevant vars;
- select relevant parts to form the fingerprint.

I May want to read and return extra observations after
establishing the fingerprint has changed
- not needed to establish there is a change
- but used later in acting on the change

I Observe current state, not all intermediate changes.

Well-Typed



Observing relevant changes
readStateSnapshot fingerprint = do

-- Read all the trigger state variables
a ← readA
b← readB
-- Construct the change detection fingerprint
let fingerprint′ = Fingerprint (f a) (g b)

-- Check the fingerprint changed, or block and wait until it does
guard (fingerprint′ 6≡ fingerprint)
-- Read all the non-trigger state variables
c ← readC
d← readD
-- Construct the overall snapshot of the state
let stateSnapshot = StateSnapshot a b c d
return (stateSnapshot, fingerprint′)

Well-Typed



Acting on the current state

We observe the current state, not all intermediate changes.
This encourages a pattern where we act based on the current state.

I Irrespective of how many changes there have been
I Can miss intermediate states if there are frequent changes
I Can becomemore efficient as we get more overloaded

Well-Typed



A real example: block fetch

A component for fetching blocks: deciding which ones, and executing

sync protocol
(instance per-peer)

CandidateChains

ChainSync ChainDB
(internal details omitted)

FetchMode MaxSlotNo
CurrentChain FetchedBlocks

BlockFetch
fetch decisions FetchRequest

FetchStatus
FetchInFlight

fetch protocol

(instance per-peer)

addBlock

Well-Typed



A modular variation on the state observation pattern

The previous example made one big (complicated) decision based on
many observables.
Other examples have many possible alternative actions.

I each action guarded by conditions
I conditions on internal state
I conditions on external observables

Would like some degree of modularity in writing such examples
I perfect use for orElse / (<|>)

Well-Typed



Modular guarded actions
loop :: State→ IO ()
loop st = do
Action jobs st′ ← atomically (guardedActions st)
mapM_ (JobPool.forkJob jobPool) jobs
loop st′

data Action = Action (Job Completion) State
type Completion = State→ Action
guardedActions :: STM Action
guardedActions st = this st

<|> that st
<|> jobCompletion

where
jobCompletion = do
completion← JobPool.collect jobPool
return (completion st)

Well-Typed



A real example: Peer-to-Peer control loop

Cardano node’s P2P network peer selection control loop
I Internal state tracks ‘cold’, ‘warm’ and ‘hot’ peers
I Targets for numbers of each class
I Actions guarded on internal state only:

- below target, for each class
- above target, for each class
- several of these actions complete asynchronously

I Actions guarded on STM observables:
- root set of peers changed
- changed targets
- connection failures
- async action completion

Well-Typed



Testing



Testing

Concurrency is still hard! Testing is especially important.

Strategy
I deterministic simulation
I property-based testing
I properties over execution traces
I properties via state-machine models

Well-Typed



Simulation
Type classes to abstract over selected IO effects

I threads, STM, sync & async exceptions, time, timers
I allows running the same code in IO and simulation

class (Monad stm, Alternative stm)⇒ MonadSTMTx stm where
type TVar stm :: ∗ → ∗
newTVar :: a→ stm (TVar stm a)
readTVar :: TVar stm a→ stm a
writeTVar :: TVar stm a→ a→ stm ()
retry :: stm a
orElse :: stm a→ stm a→ stm a

class (Monad m,MonadSTMTx (STM m))⇒ MonadSTM m where
type STM m :: ∗ → ∗
atomically :: STM m a→ m a

Well-Typed



Simulation

Simulator implementation
I pure & deterministic
I simple thread scheduler
I full STM and async exceptions behaviour
I ‘faster than real-time’ execution for timeouts
I monotonic clock and (adjustable) wall-clock
I produces an execution trace, including custom events

runSimTrace :: ∀a. (∀s. SimM s a)→ Trace a
runSim :: ∀a. (∀s. SimM s a)→ Either Failure a

Well-Typed



Testing via simulation within Cardano

Many uses of QuickCheck + simulation
I some use state machines
I some use properties over traces

Examples
I file system fault injection for chain database
I simulated full-cluster consensus testing
I protocol performance testing with simulated network delays
I live-lock avoidance in the P2P control loop
by checking progress within time limits

I planned: clock-skew testing

Well-Typed



Conclusions



Use of STM within Cardano

The use of STM within Cardano has been a clear success
I Allowed a modular design by appropriate use of concurrency
I Used with explicit (pull-based) protocols for distributed
concurrency

I Handles overload well: slows down asking for more work
I Concurrency testing found lots of bugs, very few found in
production

I Did not hit any STM weak spots
- no long-running STM transactions
- no fairness problems
- no low level performance problems

Well-Typed



Contrast with message-passing

Message passing
I push-based
I act on individual change events
I implicit queues
I resource control is implicit
(size of queues)

I no natural backpressure

State observation
I pull-based
I act on changed state eventually
I no queues
I resource control is explicit
(content of state variables)

I natural backpressure by
slowdown

Well-Typed



Conclusion

Concurrency is still hard

STM does make it easier

STM enables some useful and interesting concurrency patterns
I A plausible alternative to message-passing for many applications
I Works for internal concurrency
I For distributed concurrency, use in combination with additional
patterns, e.g. explicit protocols

Well-Typed



Acknowledgements

Marcin Szamotulski and Karl Knutsson

PREDICTABLE
NETWORK
SOLUTIONS Neil Davies and Peter Thompson

Well-Typed Edsko de Vries and Thomas Winant

Well-Typed


