
c© 2012 IEEE. Reprinted, with permission, from: Duncan Coutts, Andres
Löh, “Deterministic Parallel Programming with Haskell”, Computing in Sci-
ence and Engineering, vol. 14, no. 6, pp. 36–43, Nov.–Dec. 2012,
doi:10.1109/MCSE.2012.68.

This material is posted here with permission of the IEEE. Such permission of the
IEEE does not in any way imply IEEE endorsement of any of Well-Typed LLP’s
products or services. Internal or personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promotional purposes
or for creating new collective works for resale or redistribution must be obtained
from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view
this document, you agree to all provisions of the copyright laws protecting it.

Deterministic parallel programming
with Haskell

Duncan Coutts and Andres Löh
Well-Typed LLP

Abstract

Haskell is a modern functional programming
language with an interesting story to tell
about parallelism: rather than using concur-
rent threads and locks, Haskell offers a variety
of libraries that enable concise high-level paral-
lel programs with results that are guaranteed
to be deterministic (independent of the number
of cores and the scheduling being used).

We argue that Haskell and deterministic paral-
lelism are a good match for many computing
problems in science and engineering and demon-
strate the effectiveness of this approach using
the example of a näıve solver for a 1D Poisson
equation1.

1For context: a version of this article appears in the
Nov–Dec 2012 issue of CiSE magazine – a special
issue on parallelism and concurrency in modern
programming languages. The guest editor of that
issue set a challenge to parallelise a näıve solver for
a Poisson equation.

1 Introduction

Before the current era of multi-core CPUs, most
programmers didn’t have to worry about writ-
ing parallel programs. These days, to make use
of all the computing power that is available, we
must write parallel programs that use multiple
CPU cores. With more people writing – or try-
ing to write – parallel programs, it has become
obvious that the traditional approaches have
numerous drawbacks and that we need other
approaches.

The traditional model uses multiple concurrent
threads, and the operating system achieves
parallelism by scheduling these threads on mul-
tiple CPU cores. Haskell, however, has several
approaches that don’t use concurrent threads
and locks; it offers a variety of libraries that en-
able concise, high-level, parallel programs with
results that are guaranteed to be deterministic,
independent of the number of cores and the
scheduling being used.

1.1 Parallelism versus concurrency

We draw a distinction between parallelism and
concurrency. By concurrency we mean tech-
niques for structuring programs that let us
model computations as hypothetical indepen-
dent activities that can communicate and syn-
chronise. Parallelism is about getting results



in a shorter time by making use of multiple
processing units such as CPU or GPU cores.

The distinction is important because we often
want parallelism without needing or wanting
concurrency. It is possible to have concurrency
without parallelism, e.g. an OS running multi-
ple processes on a single CPU, and it is also
possible to have parallelism without concur-
rency. We will look at a couple approaches.

1.2 Why not concurrency?

Concurrency is great for structuring programs
like web servers and databases that have to
respond to multiple clients. For these applica-
tions concurrency makes the programs more
modular and is simply a natural fit. Haskell
has excellent support for concurrency, provid-
ing lightweight threads and libraries for styles
of concurrency such as software transactional
memory (STM) or message passing.

On the other hand, scientific and engineering
computing problems typically involve pure cal-
culation and have no need for concurrency as
a way to organise programs. For calculation
problems, such as the Poisson equation solver
that we will look at shortly, we don’t actually
want to think about threads. We want to think
about which parts of the computation are inde-
pendent of each other and hence can be done in
parallel. That is what your language, libraries
and tools should offer you.

For calculation problems, changing a sequen-
tial program to use threads invariably makes it
more complex. It also opens up the pitfalls of
deadlock, livelock and non-determinism. The
nondeterminism means that it is possible to
accidentally write programs that give different
results on different runs due to minor differ-
ences in timing. This is highly undesirable for
pure calculation problems. And if you do go
down this route, it is hard to be fully confi-
dent that you have written your program in

such a way so that it is not sensitive to timing
issues.

Our advice is simple: if your problem naturally
involves concurrency then use concurrency in
the solution, but if you have a typical calcu-
lation problem then it is usually preferable to
avoid concurrency.

1.3 Deterministic parallelism

Let’s reveal how we can talk about parallelism
without resorting to concurrency.

With deterministic parallelism, the result of
a calculation is determined only by the data
inputs and not by timing, thread scheduler de-
cisions or by how many CPU cores are used.
Haskell sports a number of deterministic paral-
lel programming models, suitable for different
styles of problem.

A major category is the parallelism available
within expressions. For example if f x and
g y are both expensive calculations then in the
expression f x + g y we have an opportunity
to evaluate the two parts in parallel. It is clear
that the program fragment f x + g y does not
express any concurrency – it is a simple pure
expression. The mechanism for evaluating the
expression has the possibility to use parallelism
to get the results sooner. Whatever evaluation
mechanism is used however, the result must
be the same. This approach extends well be-
yond simple expressions to full parallel data
structures and algorithms.

1.4 Data parallelism

Closely related to parallelism within expres-
sions is data parallelism. Data parallelism is
all about doing the same operation to a large
number of data items and because the opera-
tion on each item of data is independent, they
can all be done in parallel. Typical examples
involve bulk operations on large vectors and
arrays.

2



The Poisson equation solver falls naturally into
this category, so this is the style that we will
focus on in this article. This is no coincidence;
many problems in science and engineering turn
out to be naturally data parallel.

The key idea for writing data parallel programs
is to organise the data into collections (such as
arrays) and express the algorithms in terms of
bulk operations on those collections. This is
as opposed to the conventional sequential style
which uses explicit sequential loops and traver-
sals over the data. As an additional benefit,
data parallel programs are often shorter and
clearer than their conventional counterparts.

1.5 Parallelism and Functional
Programming

It should be noted that, even with the various
nicer parallel programming models, parallelism
is still hard. In particular getting real speedups
is hard.

For example, we usually have to write the pro-
gram differently to expose more parallelism and
eliminate unnecessary sequential data depen-
dencies. We have to indicate what chunks of a
computation can profitably be evaluated in par-
allel and what should be kept sequential. The
granularity of the parallelism has a significant
effect on performance, though as we will see,
data parallelism gives us a reasonable handle
on granularity and lets the library automate
some of the work.

So although parallel programming remains
hard, pure functional languages are an easier
place to start from than conventional impera-
tive languages.

Imperative languages start from the notion of a
linear sequence of instructions producing a lin-
ear sequence of state changes. In addition, the
imperative style allows and encourages commu-
nication between different parts of a calculation
by mutating shared variables. This makes it
very hard to determine if different parts of a

calculation can be executed independently or
if there are dependencies between them.

By contrast, in a pure functional programming
language such as Haskell, where calculations
are expressed as pure mathematical expressions
and functions, we can evaluate expressions in
any order that respects the data dependencies.
The data dependencies are explicit as function
inputs and outputs rather than implicit in the
order of state changes.

This is why there has been significant interest
in using functional programming for parallelism
in recent years: it makes a lot more sense to
start from languages that are naturally insen-
sitive to evaluation order than from languages
that are naturally sequential where we have to
try to reverse engineer some parallelism out of
them.

Of course sometimes sequencing is necessary,
such as ordering actions to read from or write to
files. In Haskell such ‘side effects’ are explicit
in the types of functions and actions so we
can cleanly separate pure calculations (where
evaluation order does not change the results)
from side effecting I/O parts of the program
(where strict ordering must be maintained).

2 Exploratory programming with
Haskell

When solving a problem we would usually not
jump straight in to writing a final fast program.
Instead we would explore the problem by writ-
ing simple versions of the important parts of
a solution. This helps us check we’re on the
right track and getting the right results.

Haskell is particularly good for this kind of
exploratory programming. Haskell lets us write
short clear code. In particular, as a functional
programming language, based on mathematical
functions, the gap between a mathematical
model and an runnable program can be quite
small.

3



φ(k, i) =


0 when k = 0

0 when i < 0 or i > n
φ(k−1,i−1)+φ(k−1,i+1)

2 + h
2ρ(i) otherwise

ρ(i) =

{
1 when i = n

2

0 otherwise

h = 0.1 (lattice spacing)

n = 10 (number of sites)

Figure 1: Numerical solution to the 1D Poisson equation.

phi k i | k = = 0 = 0
| i < 0 ∨ i > nsites = 0
| otherwise = (phi (k − 1) (i − 1) + phi (k − 1) (i + 1)) / 2

+ h / 2 ∗ rho i

rho i | i = = nsites ‘div ‘ 2 = 1
| otherwise = 0

h = 0.1 -- lattice spacing

nsites = 10 -- number of sites

Figure 2: Haskell translation of the mathematical specification

We can also write fast code with Haskell. Once
we are happy that we are getting the right
results then we can incrementally rewrite key
parts of our code to run faster, either serially
or in parallel.

2.1 The 1D Poisson equation

As a very brief introduction to Haskell we will
go through this exploratory process with our
example problem before looking at how to par-
allelise it.

Our example problem is a solver for the 1D
Poisson equation. We will solve it numerically
by a relaxation method. Figure 1 shows the
mathematical specification of our numerical
approximation. The function φ(k, i) gives the
result at site i (out of n) at the kth iteration.
The function is defined recursively so that φ

at iteration k is defined in terms of φ at iter-
ation k − 1. The base case at iteration 0 is
all 0s. For i outside of the range 0..n − 1 we
define φ(k, i) to be 0.

We can translate this mathematical function
definition φ(k, i) into an equivalent Haskell
function definition phi k i in Figure 2. You
can see that the two versions are essentially
identical with just a few differences in nota-
tion. Unlike in most programming languages,
functions in Haskell are always mathematical
functions in the usual sense. Given the same in-
puts they always yield the same outputs, there
can be no hidden dependencies.

In Haskell we write function calls as f x (y + 1)
rather than f (x , y + 1). For functions defined
by cases we put the guard conditions to the left
of the equality and separate it with a vertical
bar. We distinguish equality for defining func-

4



phiA = array extents elements
where

extents = ((0,−1), (niters − 1,nsites))
elements = [((k , i), phi k i) | k ← [0 . .niters − 1], i ← [−1 . .nsites ]]

phi k i | k = = 0 = 0
| i < 0 ∨ i > nsites = 0
| otherwise = (phiA ! (k − 1, i − 1) + phiA ! (k − 1, i + 1)) / 2

+ h / 2 ∗ rho i

Figure 3: Lazy array version

tions and values (=), from equality for checking
if two values are equal (= =).

We can use the Haskell compiler’s interactive
environment to experiment with our new defi-
nition. We put the definition in a file and load
it up in GHCi:

Main> phi 4 3

1.25e-2

We could use Haskell’s list comprehension syn-
tax to easily check our function on a range of
values:

[phi 4 i | i ← [0 . .nsites − 1]]

2.2 Memoisation

Although this function definition gives us the
right results, it is wildly inefficient for larger
values of k . This is because each phi k depends
on two recursive calls to phi (k−1), and each of
those depends on two more. There is also lots of
duplicated work going on, for example phi k i
will compute phi (k − 2) i twice, once via each
of phi (k − 1) (i − 1) and phi (k − 1) (i + 1).

We could share the calculations so that each
phi k i is calculated only once. We can do this
very simply in Haskell using a lazy array. We
define a two-dimensional array phiA of delayed
or ‘lazy’ computations (see Figure 3). The
entry at each index (k , i) is a delayed call to

phi k i . We adjust our original phi definition so
that instead of making recursive calls phi (k −
1) (i − 1) and phi (k − 1) (i + 1), we look up
their values in the array phiA. Array indexing
is written a ! i , or a ! (i , j ) for a 2-D array.

Lazy evaluation will now do the following: the
first time we look up a value in the array, it
will be computed, and the array will implicitly
be updated with the result of the computation.
If the same array entry is requested again, the
already computed result can be returned im-
mediately. This behaviour is an automatic
consequence of Haskell’s standard evaluation
strategy, and its internal complexity is com-
pletely hidden from the programmer. This
style of lazy array solution can be applied to
a wide variety of dynamic programming prob-
lems. We do not need to know the pattern of
dependencies to be able to use it. So long as
there are no cycles it will work.

This implementation now runs in time directly
proportional to nsites ∗ niters. The perfor-
mance would be quite adequate for moderate
sized examples, such as generating graphical
visualisations.

While the compiler does implement lazy arrays
rather more efficiently than you might imagine,
it is not suitable for high performance. To
write a faster serial or parallel implementation
we need to analyse and take advantage of the
pattern of data dependencies.

5



0

k

0

niters

i nsites-1

Figure 4: Data dependencies between values of
phi k i

3 Going parallel

Let us now analyse the data dependencies of
the Poisson solver and use them to come up
with a more efficient, parallel program.

3.1 Data dependencies

Figure 4 shows the data dependencies between
values of phi k i , or equivalently between en-
tries in the lazy array version above. We can
see that each row depends only on the previous
row.

We could take advantage of this fact to write a
faster serial version where we only keep one row
at a time and calculate the next row recursively
from the previous one.

Rather than writing the fast serial version we
turn our attention to parallelising the algo-
rithm. We start with looking at what paral-
lelism there is available. If we look again at
the data dependencies in Figure 4 we can see
that within each row, every element depends
only on a couple values from the previous row.
So given the previous row, each element of the
new row could be calculated independently and
thus in parallel.

Notice that this operation to calculate the new
row is a simple data parallel operation. This

should be a strong hint to us to consider using
a data parallel paradigm in our solution.

Because each element of a new row can be cal-
culated in parallel then we have a parallel factor
of nsites . The total work remains proportional
to nsites ∗ niters and for large examples both
nsites and niters will be large.

We might hope that as well as performing op-
erations on rows in parallel that we could do
something similar with columns, for example to
get one CPU core to work on the left hand half
and another to work on the right half. Unfor-
tunately the data dependencies mean that we
cannot do this, at least not without duplicating
work.

3.2 Parallel granularity

Things are not quite so rosy as they may seem.
Although we have a large number of indepen-
dent calculations, individually each of them is
a very small amount of work.

This leads us to the important issue of the gran-
ularity of parallelism. The issue of granularity
invariably crops up with parallel programming,
no matter what language or approach we take.
In many cases where parallel programs fail
to achieve expected speed improvements, the
problem turns out to be due to bad parallel
granularity. It is worth considering from the
beginning.

The granularity refers to how large the inde-
pendent chunks of work are. Too large and
we may have fewer chunks than CPU cores, or
have difficulty evenly balancing work between
cores. The more usual problem however is hav-
ing too fine a level of granularity. The problem
with very fine granularity is that there is a
certain overhead to running chunks of work on
a CPU core so if each chunk is very small then
the overheads can become quite significant or
even dominant.

6



poissonIterate prevA = computeP (traverse prevA id next)
where

next prev (Z :. i) | i = = 0 ∨ i = = nsites + 1 = 0
| otherwise = (prev (Z :. i − 1) + prev (Z :. i + 1)) / 2

+ h / 2 ∗ rho′ i

Figure 5: Data parallel version using Repa

In our example the amount of work for each
element of each row is tiny, just a handful of
arithmetic and array lookup operations. If we
were to try to parallelise at the level of each
element of each row then it is likely we would
make the program dramatically slower than the
serial version, even when using several CPU
cores.

The usual solution is to make the granularity
coarser by aggregating work into larger chunks.
How this can be done depends on the program
and what paradigm we are using to express
the parallelism. In particular, with data paral-
lelism there is the possibility to pick the gran-
ularity automatically.

3.3 A data parallel implementation

For our data parallel implementation we will
use a Haskell library called Repa (short for regu-
lar parallel arrays). The central data structure
in Repa is the parallel array. Every element of a
parallel array can be calculated independently
and the Repa library takes care of calculating
them in parallel. In particular the Repa library
helps with the granularity issue by partitioning
the array into as many chunks as there are CPU
cores. Our task is to express our algorithm in
terms of parallel arrays.

We will focus on the operation to calculate the
new row from the previous one. The parallelism
is confined to this function. Once we have this
function then the overall sequence of iterations
is straightforward.

The code is in Figure 5. There are a number
of points to notice.

Firstly a notational issue. Repa represents
array indexes using the pattern (Z :. i). The
Z constructor is the zero-dimensional index
type. The :. constructor adds an additional
dimension, so a 2-D index would be (Z :. i :. j ).
While somewhat clunky in appearance, the
purpose is to make the dimension more flexible,
for example to enable taking lower dimensional
slices of multi-dimensional arrays.

The overall structure is a bulk operation to cal-
culate a new array in terms of the old one. The
traverse function takes three parameters:

• the input array,
• a function giving the extents of the new

array in terms of the extents of the old,
and
• a function that calculates the values of the

new array in terms of values of the old
array.

Since we are producing an array of the same
size as the input one, we pass the identity func-
tion id as the second parameter. The interest-
ing detail is all in third parameter: the next
function. The next function defines the value
for each index of the new array. As its first
parameter it is supplied with a function prev
to look up values from the old array. So while
Repa does provide the array indexing operator
!, in our next function we write prev (Z :. i) to
look up values from the input array.

As this example illustrates, it is not uncom-
mon in Haskell to use functions that take other

7



functions as parameters. It is a particularly
common pattern when it comes to bulk opera-
tions. The bulk operation function defines the
skeleton of the operation and a function passed
in as a parameter fills in the detail.

In Repa, arrays come in two modes, delayed
and manifest. Delayed arrays are represented
as a function from index to value, while a man-
ifest array is the traditional in-memory repre-
sentation. The delayed representation is useful
for defining arrays by composing several sim-
pler array operations without generating lots
of temporary intermediate arrays. This lets us
write code in a clear concise style by compos-
ing multiple array operations and lets us do so
without a significant performance penalty. The
computeP function creates a manifest array –
in parallel – from a delayed array.

A final minor detail is that in the previous ar-
ray version we used array indexes from −1 to
nsites which we can do because Haskell’s ordi-
nary arrays support arbitrary extents. Repa
arrays are always indexed from 0 so we shift
everything up by one and use indexes from 0
to nsites + 1.

3.4 Compiling and running

To compile and benchmark a standalone pro-
gram we first need to define a main function
that calculates an overall result. For brevity
we omit the code but it is included in the
code that accompanies this article online (see
doi:10.1109/MCSE.2012.68).

We compile the executable using

ghc -O2 -threaded PoissonRepa.hs

The -O2 tells GHC to apply optimisations. The
-threaded flag tell GHC to link with the mutli-
core runtime system (RTS).

We can run the resulting program by using

./PoissonRepa +RTS -N4

The -N flag tells the RTS how many cores to
run on.

3.5 Improving performance

Of course the point of writing parallel pro-
grams is to improve performance. To see if
we are getting good absolute performance we
have written a fast implementation in C and
parallelised it using the OpenMP extension.

Since we care about the performance we also
ought to consider ordinary sequential optimi-
sations, so long as they do not complicate the
program too much. Our C version uses a few
tricks.

1. The C version uses unsafe array indexing
while our Haskell version in Figure 5 uses
array bounds checking.

2. If we look at the worker function next in
Figure 5 we see that it has to check the
boundary condition i = = 0 ∨ i = = nsites+1
for every single element. The C version
avoids this check because it does a loop
from 1 to nsites and handles the 0 and
nsites + 1 cases separately outside of the
loop.

3. Finally, the C version uses in-place update
of arrays. It uses only a pair of arrays
and recycles them between iterations. The
Haskell version allocates a new array for
each iteration and uses the garbage collec-
tor to clean up the old ones. The GC itself
takes very little time because the heap only
contains a small number of large objects.
The in-place update also does not change
the number of array reads and writes, but
by recycling the same area of memory it
is likely to be able to keep more of the
arrays in the local CPU caches.

Figure 6 shows our optimised Repa version
with two of the three tricks applied.

Haskell has a strong ‘safety first’ culture and
unless you specifically use an unsafe feature

8



poissonIterate phi = computeP (single0 ++ middle ++ single0 )
where

single0 = fromFunction (Z :. 1) (const 0)
middle = unsafeTraverse phi (const (Z :. nsites)) next
next prev (Z :. i) = (prev (Z :. i) + prev (Z :. i + 2)) / 2

+ h / 2 ∗ rho i

Figure 6: Optimised Repa version

you should not be able to write a program
that segfaults. The convention is that libraries
that provide unsafe features label them very
explicitly with the prefix ‘unsafe’. For example
with Repa we can use array indexing without
bounds checking using unsafeIndex . To elim-
inate bounds checking for our poissonIterate
function all we have to do is switch from using
traverse to unsafeTraverse, no other changes
are required.

The issue of the boundary condition i = = 0 ∨
i = = nsites + 1 is rather interesting. If we de-
fine an array by a function from index to value
it seems hard to handle special cases without
having to test the index all the time. What we
can do however is to build the array in parts.
Repa provides an array append operator (++).
We can append two singleton 0 arrays on ei-
ther side of the main part which then no longer
needs to test for the boundary indexes. In fact
this provides an example of the advantage of
Repa’s delayed array representation. The ++
operator does not need to immediately copy
both arrays, it simply defines a new function
that reads from both arrays. We do not mani-
fest a new array until we use computeP .

Finally, with Repa we cannot use the trick of
using in-place array updates and recycling just
a pair of arrays. While Haskell’s ordinary non-
parallel arrays come in both immutable and
mutable variants, the Repa library provides
only immutable arrays.

3.6 Benchmarks

As well as absolute performance, we are inter-
ested in how well the performance scales with
the number of CPU cores we use. One of the
first things we find when we try some sample
runs is that the number of sample sites (the
width of the rows) makes a big difference to
how much improvement we get from using more
cores. This comes back to granularity. Even
though the whole row can be calculated in par-
allel, if this is only a few 1000 elements then the
amount of work to do is still relatively small.
All CPU cores need to synchronise after each
row and this wastes some time. In particular,
if we double the number of cores but keep the
data size the same then we halve the amount
of work per core, proportionately increasing
the effects of synchronisation overheads.

With these caveats in mind we set the number
of sample sites at 64, 000 and the number of
iterations at 40, 000. We ran both versions on
a 2-socket, 8-core, 3 GHz Xeon. We used gcc

4.6 with -O2 -fopenmp and ghc 7.4.1 with -O2

-threaded. The results are in Figure 7.

Cores OpenMP Repa
time speedup time speedup

1 22.0s 1× 25.3s 1×
4 6.9s 3.2× 11.4s 2.2×
8 5.3s 4.2× 8.4s 3.0×

Figure 7: Benchmark comparison of C
OpenMP and Haskell Repa versions
on 1–8 cores.

9



The absolute timings are not themselves espe-
cially interesting, what is interesting is how
well the performance scales with the number
of CPU cores, and the comparison between the
Haskell and C versions.

3.7 Assessment

Beating C on well-optimised array programs is
always going to be difficult, and it is not what
we are trying to do. Nevertheless, the perfor-
mance in this example is fairly reasonable.

The point is to provide a way of writing parallel
programs with reasonable performance that is
less complex, that is quicker in development
time and that provides greater confidence that
the programs are right.

4 The future

Haskell sports a range of ways of approaching
parallelism and concurrency, many of which are
mature and some of which are still active re-
search and development projects. An approach
that has been in use for many years now is
the parallelism within pure expressions that we
mentioned previously.

Repa is actually a relatively new approach in
Haskell. We chose to introduced you to Repa
because the Poisson equation solver example
falls so nicely into the data parallel style.

In fact Repa is a product of a much more ambi-
tious ongoing project on Data Parallel Haskell
(DPH). DPH takes the data parallel idea one
step further by adding nested data parallelism.
Usual ‘flat’ data parallelism is all well and
good but you need to be able to express your
algorithms using dense arrays. This includes
vectors and higher-dimensional arrays but not
sparse vectors/matrices or nested data struc-
tures such as trees. Nested data parallelism
increases the range of parallel data structures
and algorithms that can be expressed using

parallel arrays by allowing parallel arrays to
contain other arrays, or data structures con-
taining arrays. Good performance is achieved
by a compile-time ‘flattening’ transformation
to turn nested arrays into a single flat array
which can then be partitioned evenly across all
processor cores.

Other recent and ongoing developments include
libraries that provide elegant ways of program-
ming GPUs (again using data parallelism) and
libraries for doing distributed memory program-
ming, e.g. clusters or grid/cloud systems. Fi-
nally, there is work under way to make the
compiler GHC able to take advantage of CPU
SIMD vector instructions, such as Intel’s SSE
and AVX instruction sets.

Put this all together and within a few years
we have the potential to cover parallelism at
all levels: SIMD vector, multi-core, GPU and
clusters, and to do so in a coherent principled
way, all within one language.

5 Further reading and related work

5.1 Haskell

There are a number of excellent resources for
learning Haskell, both books and online.

• Online http://haskell.org/ provides a
central portal.

• For a short basic introduction to Haskell
we recommend Programming in Haskell
(Graham Hutton; Cambridge University
Press; 184 pages).

• A fun and quirky alternative is Learn you
a Haskell
(Miran Lipovača; No Starch Press; 400
pages).

10



• Real World Haskell is a huge book cover-
ing lots of practical material: FFI, DBs,
GUI, web, performance, concurrency etc.
(Bryan O’Sullivan, Don Stewart and John
Goerzen; O’Reilly; 720 pages).

5.2 Parallelism in Haskell

Simon Marlow, one of the lead GHC de-
velopers, has a good tutorial Parallel and
Concurrent Programming in Haskell. This
covers the main parallel approaches other than
Repa, plus concurrency.
http://community.haskell.org/~simonmar/

par-tutorial.pdf

A similar introduction can be found in A
Tutorial on Parallel and Concurrent Program-
ming in Haskell by Simon Peyton Jones and
Satnam Singh.
http://research.microsoft.com/en-us/

um/people/simonpj/papers/parallel/

AFP08-notes.pdf

Further details on Repa are available from its
home page http://repa.ouroborus.net/. In
particular if you were interested by the Poisson
solver example then we would recommend the
Repa paper Efficient Parallel Stencil Convolu-
tion in Haskell which covers similar examples
and describes some techniques for extracting
further performance gains.

Finally, if you’re now wondering how you might
do GPU or cluster programming in Haskell then
we recommend the papers

• Accelerating Haskell array codes with
multi-core GPUs
http://www.cse.unsw.edu.au/~chak/

papers/CKLM+11.html

• Towards Haskell in the cloud
http://research.microsoft.com/en-us/

um/people/simonpj/papers/parallel/

5.3 Background and related work

There is a range of academic papers on paral-
lelism and concurrency in Haskell, both models
and details of implementations.

• Algorithm + Strategy = Parallelism (Phil
Trinder, Kevin Hammond, Hans-Wolfgang
Loidl and Simon Peyton Jones. JFP 1998).
This concerns the parallelism available
within expressions. It introduces the paral-
lel “strategies” approach. The attraction
of this approach is that what to compute
and the parallel evaluation strategy can
be specified separately.

• Seq no more (Simon Marlow, Patrick
Maier, Phil Trinder, Hans-Wolfgang Loidl,
and Mustafa Aswad. Haskell Symposium
2010). This is a modern update on the “al-
gorithms + strategies = parallelism” story.

• A monad for deterministic parallelism (Si-
mon Marlow and Ryan Newton. Haskell
Symposium 2011). Using par/seq and
strategies to write parallel Haskell pro-
grams can be tricky; this paper explains
why and offers a possible solution.

• Concurrent Haskell (Simon Peyton Jones,
Andrew Gordon and Sigbjorn Finne.
POPL 1996). This is the original de-
scription of the concurrency extension for
Haskell. The long version of the paper
also has implementation details.

• Haskell on a Shared-Memory Multipro-
cessor (Tim Harris, Simon Marlow and
Simon Peyton Jones. Haskell Workshop
2005). This describes how to implement
Haskell on multicore machines.

This list is just a small sample.
For a more extensive list see http:

//www.haskell.org/haskellwiki/Research_

papers/Parallelism_and_concurrency

11


