
falsify: Internal Shrinking Reimagined for Haskell
Edsko de Vries
Well-Typed LLP

United Kingdom, London
edsko@well-typed.com

Abstract
In unit testing we apply the function under test to known
inputs and check for known outputs. By contrast, in property
based testing we state properties relating inputs and outputs,
apply the function to random inputs, and verify that the
property holds; if not, we found a bug. Randomly generated
inputs tend to be large and should therefore be minimised.
Traditionally this is done with an explicitly provided shrinker,
but in this paper we propose a way to write generators that
obsoletes the need to write a separate shrinker. Inspired
by the Python library Hypothesis, the approach can work
even across monadic bind. Compared to Hypothesis, our
approach is more suitable to the Haskell setting: it depends
on a minimal set of core principles, and handles generation
and shrinking of infinite data structures, including functions.

CCS Concepts: • Software and its engineering→ Soft-
ware testing and debugging.

Keywords: property based testing, internal shrinking, func-
tional programming
ACM Reference Format:
Edsko de Vries. 2023. falsify: Internal Shrinking Reimagined for
Haskell. In Proceedings of the 16th ACM SIGPLAN International
Haskell Symposium (Haskell ’23), September 8–9, 2023, Seattle, WA,
USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3609026.3609733

These considerations suggest that not the verifiability but the
falsifiability of a system is to be taken as a criterion of demarcation.

Karl Popper, The Logic of Scientific Discovery

1 Introduction
Unit tests typically supply a function with specific inputs,
and then verify the result against specific outputs. This tends
to be an excellent way to confirm one’s cognitive bias: after

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Haskell ’23, September 8–9, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 979-8-4007-0298-3/23/09. . . $15.00
https://doi.org/10.1145/3609026.3609733

all, if a programmer is not taking a specific edge case into
account in their code, why would they think to include that
edge case in their unit tests? It also scales poorly; typically,
for a system with 𝑛 features, we write 𝑂 (𝑛) unit tests, a few
tests per feature. However, often bugs arise from interaction
between features; while writing𝑂 (𝑛) tests is merely tedious,
writing𝑂 (𝑛2),𝑂 (𝑛3), . . . , tests becomes unfeasible. Thus the
motto of property based testing, due to its godfather John
Hughes: “do not write tests: generate them” [9].

Rather than supplying a function with specific inputs and
checking for specific outputs, we instead define properties
the function should have, supply the function with randomly
generated inputs, and verify the results against the property.1
If the property is not satisfied, the test fails and we have
found a counterexample. This has proven highly effective;
first made popular by the QuickCheck library for Haskell
[5], the approach has since been ported to countless other
programming languages, functional or otherwise (section 8).
An important part of property based testing is shrinking:

randomly generated test data tends to to be large and contain
irrelevant details. To make debugging easier, it is therefore
important to try and shrink the counterexample as much as
possible, ideally until only relevant details remains.

Despite widespread success, QuickCheck is not without its
problems, especially in its approach to shrinking, as we shall
see in section 2. Two libraries in particular have put forth
alternative approaches. First, QuviQ QuickCheck [3] is based
on integrated shrinking (section 3). Second, Hypothesis [14]
is based on internal shrinking, and is the direct inspiration
for our work on falsify; we will discuss our own approach
in section 4, and compare it to Hypothesis in section 7.

Our contributions are as follows:
• A key abstraction in Hypothesis is the choice sequence,
essentially an unrolled PRNG (section 7.1). Instead of
this linear representation, we propose a tree-shaped
representation which we call a sample tree (section 4.2).
• Hypothesis uses a relatively large and growing list of
reduction passes for this choice sequence (section 7.2).
In falsify there is only one2: shrink a sample in the
tree (section 4.4). This makes shrinking predictable
and gives users more control.

1Some property based testing approaches use exhaustive enumeration (for
small domains) rather than random generation. In this paper our focus is
on random generation; we will briefly come back to the enumeration case
when we discuss related work (section 8.5).
2Two if you consider the optimisation where we replace all samples in a
subtree by zero at once (section 4.4) to be a separate pass.

https://doi.org/10.1145/3609026.3609733
https://doi.org/10.1145/3609026.3609733
https://doi.org/10.1145/3609026.3609733

Haskell ’23, September 8–9, 2023, Seattle, WA, USA Edsko de Vries

• Our sample tree gives us “hierarchical debugging” for
free: we can shrink generators independently from
each other. To do the same, Hypothesis needs to recover
some kind of tree structure (section 7.1).
• We show how we can advantage of selective functors
to further improve the independence of generators
(section 6.1).
• We show how we can combine internal shrinking with
manually written shrinkers (section 6.2.1).
• Our representation allows the generation of infinite
data structures, and we show how to take advantage
of this to generate functions (section 6.2.2).
• We discuss that even with internal shrinking, it is still
important to test shrinking, and we show how we can
do that (section 6.3).

2 Manual Shrinking
In order to better understand the motivation for and success
of the internal shrinking approach, we will first summarise
its predecessors. In this section wewill discuss the traditional
QuickCheck approach, which we dub heremanual shrinking.
Section 3will discuss integrated shrinking, at which point the
stage is set for introducing internal shrinking in section 4.We
will focus on principles rather than implementation details,
and set things up so as to facilitate comparison between the
different approaches.

At the core of all of these approaches lies the definition of
a generator of random values. In QuickCheck, a generator
consists of a function to produce a random value given a
pseudo random number generator (PRNG), and a function
to shrink such values:

data GenQ a = GenQ { gen :: PRNG → a

, shrink :: a → [a] }

The shrink function should return a list of possible shrunk
values. When the test driver finds a counterexample, it calls
shrink repeatedly until either none of the values constitute
a counterexample (we have shrunk too much), or shrink
returns no more options (the example is already minimal).

Here is an example generator for unsigned integers:

wordQ :: GenQ Word

wordQ = GenQ {gen = . . ., shrink = shrinkWord}

where shrinkWord is defined as

shrinkWord :: Word → [Word]

shrinkWord 0 = []

shrinkWord n = [0 .. n - 1]

This definition of shrinkWord is “optimal” in the sense
that if a smaller value of𝑛 exists it will find it, since it tries all
smaller values. This is expensive, however, and shrinkers for
integers typically use some kind of binary search; however,
such concerns are orthogonal to our current discussion.

More pertinent is the fact that GenQ only supports very
limited compositionality. For example, here is how we might
construct a generator for pairs:
pairQ :: GenQ a → GenQ b → GenQ (a, b)

pairQ g1 g2 =

Gen { gen = 𝜆r → let (r1, r2) = split r

in (gen g1 r1, gen g2 r2)

, shrink = 𝜆(x, y) →
[(x', y) | x' ← shrink g1 x]

++ [(x , y') | y' ← shrink g2 y] }

When producing a value, we split the PRNG in two [21], and
feed the pieces to the two generators; in shrinking, we either
shrink the left value or the right value in the pair (remember
that shrinking just returns a single step; we might shrink the
left value in step one, and then the right value in step two).3

Unfortunately, this cannot be the basis for an Applicative
instance, since GenQ is not a functor:

instance Functor GenQ where

fmap f g = GenQ { gen = f . gen g

, shrink = not definable }

No implementation of shrink exists because in addition to
the argument f :: 𝑎 → 𝑏 we get in fmap, we would also need
an f′ :: 𝑏 → 𝑎 before we can apply shrink on type 𝑎.

This makes GenQ less composable than one might like; for
example, we cannot construct a generator for even numbers
by doubling the results of a generator for arbitrary numbers,
nor we can construct a generator for lists of elements that
satisfy some predicate 𝑝 by filtering the results of a generator
for arbitrary lists.
Such generators can be defined in a non-compositional

manner, of course, but when we do, we find that the same
logic is often present in the function to produce values and
in the function to shrink them. For example, here is how we
might write filterQ (where filter is the standard filter
function on lists):
filterQ :: (a → Bool) → GenQ [a] → GenQ [a]

filterQ p g =

GenQ { gen = filter p . gen g

, shrink = map (filter p) . shrink g }

3 Integrated Shrinking
The QuviQ QuickCheck library for Erlang set out to solve the
problems we discussed in the previous section. In the Haskell
world, this approach is popularised by the library Hedgehog.
Their integrated shrinking approach makes it possible to
define Functor and Applicative instances for generators,
and duplication of logic is avoided. However, while a Monad
instance is possible, it does not work very well; we will need
to turn our attention to internal shrinking in section 4 before
we can address that problem.
3To avoid combinatorial explosion, we not try to shrink both values at once.

falsify: Internal Shrinking Reimagined for Haskell Haskell ’23, September 8–9, 2023, Seattle, WA, USA

(a) (b) (c)

Figure 1. Applicative Composition

3.1 Shrink Trees
Instead of manually pairing each generator with a shrinker,
in integrated shrinking the generator itself produces a value
and all possible ways to shrink that value:

type GenH a = PRNG → Tree a

data Tree a = Node a [Tree a]

Here Tree is the type of 𝑛-ary trees: the root corresponds
to the value to be produced, and values further down the
tree are possible ways to shrink it. For primitive generators,
the easiest way to define a generator is still by supplying a
function to produce a value and a function to shrink a value:

genH :: GenQ a → GenH a

genH g = unfoldTree (𝜆x → (x, shrinkQ g x)) . genQ g

As an example, fig. 1(a) shows the tree that might arise
from generating the value 2, shrinking integers to all smaller
values, like we did in section 2.

This definition has a number of important benefits. For
starters, it can easily be given a Functor instance, using the
Functor instance for Tree:

instance Functor GenH where

fmap f g = fmap f . g

This alone is already very useful. For example, we can
now write filter without any duplication of logic:

filterH :: (a → Bool) → GenH [a] → GenH [a]

filterH = fmap . filter

Like for manual shrinking, it is not difficult to write a
combinator for pairs of generators:

pairH :: GenH a → GenH b → GenH (a, b)

pairH g1 g2 r =

let (r1, r2) = split r in go (g1 r1) (g2 r2)

where

go :: Tree a → Tree b → Tree (a, b)

go l@(Node a as) r@(Node b bs) =

Node (a, b) $ [go a' r | a' ← as]

++ [go l b' | b' ← bs]

This implements the same logic as pairQ: the root of the tree
corresponds to the original pair, and then we either shrink
the left or the right value.

(b)

(a) (c) (d) (e)

Figure 2.Monadic Composition

Figure 1 illustrates the process: (a) is the tree for integers
we saw before; (b) shows a tree for characters starting at
’b’ and shrinking to ’a’, and (c) shows the result of pairing
these two.
We can now equip GenH with an Applicative instance;

for pure, we return a tree with the given value as its root
and no possible shrinks:
instance Applicative GenH where

pure x _ = Node x []

g1 <*> g2 = fmap (uncurry ($)) (pair g1 g2)

3.2 Monadic Composition
This is all looking very promising so far, but trouble starts
when we start to think about monadic composition. Monadic
composition is required when the behaviour of a generator
depends on previously generated values; it arises naturally
and frequently. For example, consider generating a list of
random length containing random characters:4

randomList :: GenH [Char]

randomList = do n ← word ; replicateM n char

Monadic composition boils down to implementing
(>>=) :: Tree a → (a → Tree b) → Tree b

x >>= f = . . .

The obvious first thing to try is to apply 𝑓 at every node in
tree 𝑥 , resulting in a tree of type Tree (Tree b). Figure 2(a)
shows what this would look like for randomList, assuming
the int and char trees from fig. 1(a) and (b): the outer tree
has the same structure as fig. 1(a), with a shrink tree for
𝑛 characters replacing the value 𝑛 in the original tree. The
question is how to flatten or “join” this tree.
There are two natural ways in which we might define

this function, which we might call left-biased join and right-
biased join; their effects are illustrated in fig. 2(b) and (c):
4replicateM repeats an action 𝑛 times, collecting the results; despite the
name, it uses the applicative interface only.

Haskell ’23, September 8–9, 2023, Seattle, WA, USA Edsko de Vries

lb (Node (Node x xs) xss) = Node x (map lb xss ++ xs)

rb (Node (Node x xs) xss) = Node x (xs ++ map rb xss)

In our example, left-biased join will shrink the length of
the list first, and right-biased join will shrink the list elements
first. However, notice something unfortunate: once we start
shrinking elements, we never go back again to shrink the list
length. Between these two choices then left-biased would
the better, though neither is particularly good.
Looking at fig. 2(a), we might wonder5 if there might be

a third option, flattening a tree by inserting an edge from
every node in a subtree to the roots of the flattened trees
below; fig. 2(d) shows an excerpt from the resulting tree.
The problem with this approach is that a priori we have no
reason to believe there is any relation at all between the
nodes of one subtree and the nodes of another. Notice how
we might shrink from “bb”⇝ “ab”⇝ “aa”⇝ “b”; it is as
if we forgot that we previously shrunk that ‘b’ to an ‘a’.

Perhaps looking at a slightly different example will bring
this into sharper focus: fig. 2(e) shows an example where in
the case of a list of length 1 we use a different generator for
the element. Applying the same approach, we might shrink
“bb”⇝ “ab”⇝ “aa”⇝ “d”. It is not so much that this is
an invalid shrink step, but there is a lot of wasted effort.
Zooming out, if we ponder the type of bind again

(>>=) :: GenH a → (a → GenH b) → GenH b

it is actually clear that we cannot shrink the second generator
independently from the first, since we have no generator
without applying it to the result of the first. Yes, we can
shrink the results of the second generator for a while and
then go back and try to shrink the results from the first, but
if we do, we need to reapply 𝑓 and all start over again, and
our previous shrinking efforts will simply be wasted; this is
another way to understand what is happening in fig. 2(d).

4 Internal Shrinking: falsify Style
We now get to the heart of this paper, introducing internal
shrinking as implemented in Haskell by the falsify library6.

4.1 Generation versus Parsing
So far we have split the random number generator whenever
we needed to compose generators. There are good reasons
for doing this, and we will return to this approach soon. Let
us however briefly consider an alternative, where generators
return an updated PRNG, and we pass the PRNG linearly
from generator to generator (shrinking is unchanged); this
is illustrated in fig. 3.
If we “unroll” the PRNG to a stream of samples, we can

shift our perspective and rather than thinking of gen as a
generator, instead think of it as a parser of this stream:
parse :: [Sample] → (a, [Sample])

5Suggestion due to Gabriel Scherer.
6The library with author names removed is included in the submission.

data GenL a = GenL {gen :: PRNG → (a, PRNG), . . .}

pairL :: GenL a → GenL b → GenL (a, b)

pairL g1 g2 = GenL { gen = 𝜆r0 →
let (a, r1) = gen g1 r0

(b, r2) = gen g2 r1
in ((a, b), r2), . . . }

Figure 3. Linear Use of a PRNG

The key insight from Hypothesis is that we do not need to
shrink values at all: we can shrink the stream of samples, and
then re-run the parser/generator. In the remainder of this
section we will now describe our approach, which takes this
core idea from Hypothesis but is otherwise quite different.

4.2 Sample Tree
For reasons that will become clear later, we will not use a
stream (list) of samples, but rather a tree of samples.

data STree = STree Sample STree STree | Minimal

data Sample = Sample { value :: Word }

The intention of STree is that we either use the sample or
the subtrees (corresponding to a split PRNG).7 Conceptually,
a sample tree is always infinite; Minimal corresponds to the
tree that is zero everywhere:

view :: STree → (Sample, STree, STree)

view (STree s r1 r2) = (s, r1, r2)

view Minimal = (Sample 0, Minimal, Minimal)

pattern Inf :: Sample → STree → STree → STree

pattern Inf s r1 r2 ← (view → (s, r1, r2))

Given an interface for a (splittable [21]) PRNG

sample :: PRNG -> Sample

split :: PRNG -> (PRNG, PRNG)

we can easily construct a sample tree from a PRNG:

sTree :: PRNG → STree

sTree r = let (r1, r2) = split r

in STree (sample r) (sTree r1) (sTree r2)

The Minimal constructor is introduced during shrinking; we
will discuss this in section 4.4.

A generator then is a parser of this sample tree. In our
approach, these parsers cannot fail; every sample tree is a
valid input (just like a generator cannot fail to produce a
value depending on the PRNG seed). Moreover, we mandate
that generators are subject to the following contract:

When run against the minimal sample tree, a
generator should produce its simplest value.

7With linear logic we would be able give STree a more precise type:
STree :: Sample N (STree ⊗ STree) ⊸ STree.

falsify: Internal Shrinking Reimagined for Haskell Haskell ’23, September 8–9, 2023, Seattle, WA, USA

4.3 Generator
A generator is a function which, when given a sample tree,
produces a value as well all possible ways that the sample
tree can be shrunk:
newtype Gen a = Gen { run :: STree → (a, [STree]) }

Sample tree shrinking is not independent from generation
of values because sample trees are infinite: the generator
defines which parts of the sample tree are of interest. It
also enables some of the extensions discussed in section 6.
However, users of the library almost never need to think
about or deal with the underlying sample tree at all.
The list of shrunk sample trees corresponds to a single

shrinking step. As in QuickCheck, the shrinking algorithm
then is greedy, repeatedly taking the first candidate shrunk
sample tree (where a shrunk sample tree is considered a
candidate if it still corresponds to a counter-example):
shrink :: (a → Bool) → Gen a → (a, [STree]) → [a]

shrink p g (a, shrunk) =

case filter (p . fst) $ map (run g) shrunk of

[] → a : []

c:_ → a : shrink p g c

To find the initial input to shrink, a test driver generates
different sample trees from different initial PRNG seeds, until
it finds a seed that corresponds to a counter-example to the
property being tested.

The most primitive generator just returns the next sample;
for simplicity, we will use shrinkWord as the shrinker.8

prim :: Gen Word

prim = Gen $ 𝜆(Inf s l r) →
(value s

, (𝜆s' → STree (Sample s') l r) <$>
shrinkWord (value s)

)

4.4 Monad Instance
The Monad instance for Gen is as follows (this is only “morally”
and not strictly a monad; we will discuss the monad laws in
section 4.7):
instance Monad Gen where

return x = Gen $ 𝜆_ → (x, [])

x >>= f = Gen $ 𝜆(Inf s l r) →
let (a, ls) = run x l

(b, rs) = run (f a) r

in (b, comb s (l : ls) (r : rs))

We start with two sample trees 𝑙 and 𝑟 that we use for 𝑥
and 𝑓 , respectively. When we run 𝑥 , we get a list of shrunk
sample trees 𝑙 ′, and when we shrink 𝑓 (using the unshrunk
sample tree 𝑟), we get a list of shrunk sample trees 𝑟 ′.
8As discussed in section 2, usually binary search is a more suitable choice,
and it is the default in falsify, although this can be overridden in the rare
cases that this is necessary.

comb :: Sample → [STree] → [STree] → [STree]

comb s (l : ls) (r : rs) = shortcut $
[STree s l' r | l' <- unlessMinimal l ls]

++ [STree s l r' | r' <- unlessMinimal r rs]

where unlessMinimal :: STree → [a] → [a]

unlessMinimal Minimal _ = []

unlessMinimal _ xs = xs

shortcut :: [STree] → [STree]

shortcut [] = []

shortcut ts = Minimal : ts

Figure 4. Combining Shrunk Sample Trees

Critically, although we need the generator in order to
shrink, we do not reintroduce problems of the kind that
integrated shrinking suffers from. Since we are shrinking the
sample trees that feed into the generators and not the values
produced by the generators, we can go freely back and forth
between shrinking the left subtree and right subtree.
The final step is to combine these sample trees; the code

for comb, shown in fig. 4, is a bit subtle. Sample trees are
infinite, and so we have to be careful to ensure termination.
We do this by introducing a “shortcut” which replaces entire
subtrees by Minimal, and then stop shrinking once a tree is
minimal. Since any given property will only require a finite
part of the sample tree, we must always be able to reduce an
infinite sample tree to a finite tree in this way.

4.5 Comparison with Integrated Shrinking
Let us consider a similar generator to the one that was giving
us trouble with integrated shrinking:

randomList :: Gen [Word]

randomList = do n ← prim ; replicateM n prim

Suppose we are testing the property that “the elements of
a list are all equal”, and we find counter-example [1, 1, 0];
fig. 5(a) shows the corresponding sample tree. At this point,
we cannot shrink the list length, because the prefix [1, 1] is
not a counter-example; we can however shrink the first ele-
ment of the list to get [0, 1, 0]. We can now “go back” and
shrink the size of the list, ending up with [0, 1]; figures 5(b)
and 5(c) show the corresponding sample trees. Unlike with
integrated shrinking, we can go back and forth between
shrinking elements of the list and shrinking the list length,
and will not “forget” which lists elements we already shrunk.

4.6 Limitations
We must be careful to recognise what this approach can and
cannot achieve. Shrinking worked out well in section 4.5,
because the generator for a list of length 𝑛 (replicateM 𝑛 𝑔)
will look at a subtree of the sample tree as we decrease 𝑛.

Haskell ’23, September 8–9, 2023, Seattle, WA, USA Edsko de Vries

(a): [1, 1, 0] (b): [0, 1, 0] (c): [0, 1]

Figure 5. Internal Shrinking

3⇝2

1⇝0

(a)

(b) (c) (d) (e)

Figure 6. Non-uniform Sampling Trees

But suppose we defined a custom list generator like this:

list :: Word → Gen a → Gen [a]

list 0 _ = pure []

list 1 g = (𝜆x → [x]) <$> g

list 2 g = (𝜆x y → [x, y]) <$> g <*> g

list 3 g = (𝜆x y z → [x, y, z]) <$> g <*> g <*> g

On the surface, this looks pretty regular too, but in fact it is
not, due to the left-associative nature of <*>; figure 6(a–d)
shows the sample trees that a generator for lists of length
between 0 and 3 would look at.

Let us reconsider the example we studied in the previous
section, but with this new list generator. Suppose we start
with the sample tree from fig. 6(e), where we have marked
the samples in the tree with a “2” if they are used when
generating a list of length two, and with a “3” for lists of
length three; fig. 6(e) corresponds to starting list [1, 1, 0].
As before, we can shrink this to [0, 1, 0], but now we

cannot shrink this further: if we tried to reduce the list length,
we would look at a different part of the sample tree, which
in this case happens to correspond to the list [0, 0], which
is not a counter-example to the property that all elements of
a list must be equal.

Let us ponder monadic bind once more; have we really
achieved something?
(>>=) :: GenH a → (a → GenH b) → GenH b

When we considered this in section 3.2 in the discussion
of integrated shrinking, we said that we cannot shrink the
right hand side independently from the left because we do
not have anything to shrink. With internal shrinking, this
is not true: we can shrink the right subtree. The question is
whether or not this is useful, and the answer is “it depends”.

The answer is affirmative in a well-behaved example like
randomList from section 4.5, but we are not always so lucky.
When we are not, two things can happen, depending on the
specifics of the generator. First, wemight explore a part of the
sample tree we did not look at before, essentially restarting
shrinking, like we might in integrated shrinking. Second, we
might continue with a previously shrunk tree, but interpret
it in the context of a different generator; whether or not this
will allow us to make further progress is again generator
dependent. Partly the answer to this is to try and arrange
things so that we are “lucky”, writing our generators with
this in mind: shrinking never truly comes for free!

4.7 Monad Laws
Technically speaking, the Monad instance for Gen does not
satisfy the monad laws: the structure of a generator dictates
which parts of the sample tree it uses. This is similar to the
Gen monad in QuickCheck: “Gen is only morally a monad:
two generators that are supposed to be equal will give the
same probability distribution, but they might be different as
functions from random number seeds to values”.9
We should admit, however, that the fact that internal

shrinking works directly with the random samples does
make this a little worse. For example, consider
contrived :: Gen Word

contrived = do x ← prim

if x == 0 then prim

else prim >>= return

If the initial value of 𝑥 is non-zero, prim will look at one
part of the tree; if then at later stage 𝑥 is shrunk to zero, the
prim >>= return branch will look at a different part of the
sample tree, and any shrinking we did in the prim branch
will be lost. Put another way, “modulo a choice of sample
tree” is perhaps a stronger side condition than it might seem.

5 Example Generators
To build some intuition for how we can take advantage of
internal shrinking, this section will discuss some example
generators. The key is to consider how values produced by
a generator shrink as the values produced by the generators
it depends on shrink. The only primitive generator is prim,
which produces a Word and shrinks towards 0.
9From Test.QuickCheck.Gen.Unsafe.

falsify: Internal Shrinking Reimagined for Haskell Haskell ’23, September 8–9, 2023, Seattle, WA, USA

5.1 Booleans
Here is how we might produce a boolean:
bool :: Gen Bool

bool = (≥ (maxBound `div` 2)) <$> prim

The values returned by prim are drawn uniformly from the
full range of Word; this means that bool chooses between
True and False with equal probability. Moreover, as the
value returned by prim shrinks towards zero,10 bool will
shrink towards False. To get a generator that shrinks to-
wards True instead, we can simply take the complement.

5.2 Limited Range
Let us consider writing a generator that produces a value in
the interval [0, 𝑛], for 𝑛 < maxBound. Here is a non-solution:
wrongBelow :: Word → Gen Word

wrongBelow n = (`mod` (n + 1)) <$> prim

Although this produces values in the right range, it does not
have the correct shrinking behaviour.11 Suppose 𝑛 = 10; as
the value produced by prim shrinks from 22 to 21, the value
produced by wrongBelow “shrinks” from 0 to 10.
We must instead somehow compress the range of prim.

One way to do this is to first generate a random fraction in
the range [0, 1]:
fraction :: Gen Double

fraction = frac <$> prim

where frac :: Word → Double

frac x = fromIntegral x / range

range :: Double

range = fromIntegral (maxBound :: Word)

All we need to do now is scale the fraction to the right range:
below :: Word → Gen Word

below n = (round . (* fromIntegral n)) <$> fraction

5.3 Signed Fractions
In section 5.2 we designed a generator for fractions in the
range [0..1]. As our final example we will consider how we
might write a generator for signed fractions in the range
[−1, 1], shrinking towards 0. First, another non-solution:
wrongSignedFraction :: Gen Double

wrongSignedFraction = do

neg ← bool

if neg then negate <$> fraction

else fraction

10The full falsify library improves on this basic design for bool, and for
below (section 5.2), by allowing prim to take bigger steps. This improves
the performance of shrinking, but does not otherwise change its semantics.
11It could be argued that this does not matter: although wrongBelow will
cycle, it will eventually shrink towards zero. However, this is only true if
temporarily increasing the value still results in a counter-example. It also
makes shrinking much less intuitive.

We generate an additional boolean neg, telling us whether
or not we should negate the fraction. The problem with this
definition is that this boolean will shrink towards False,
introducing a bias towards positive fractions; for example, it
would be impossible to shrink from +0.4 to −0.2.

One possible correct implementation is to two generate
two fractions, one to serve as positive fraction and to serve
as a negative one, and choose whichever is closest to zero:

signedFraction :: Gen Double

signedFraction = aux <$> fraction <*> fraction

where aux :: Double -> Double -> Double

aux x y | x ≤ y = x

| otherwise = negate y

6 Extensions
In this section we will consider some extensions to the basic
theory that significantly increase its expressivity, without
complicating the core ideas.

6.1 Selective Functors
Consider this combinator that chooses randomly between
one of two generators, shrinking towards the left:

chooseSuboptimal :: Gen a → Gen a → Gen a

chooseSuboptimal l r = do b ← bool

if b then l else r

Suppose the value of 𝑏 is True, and we are shrinking the
sample tree for 𝑙 . If at any point 𝑏 shrinks to False, we will
now use the sample tree as 𝑙 left it, and use that same tree
for 𝑟 ; but it is not at all given that any shrinking we did for 𝑙
was in any way meaningful for 𝑟 .

We might attempt to improve the situation as follows:

chooseWrong :: Gen a → Gen a → Gen a

chooseWrong l r = aux <$> l <*> r <*> bool

where aux :: a → a → Bool → a

aux x y b = if b then x else y

In this version we generate values from both 𝑙 and 𝑟 , and
then choose. Since Gen is lazy, this will not actually run both
generators; only one value will be demanded in any given
test run. This version is nonetheless wrong: it shrinks very
poorly. Suppose 𝑏 is currently True, and we are using the
output of 𝑙 . Since the sample tree used by 𝑟 is unused at this
point, it can be replaced by Minimal during shrinking; where
in the suboptimal version 𝑟 would reuse the sample tree left
by 𝑙 , here the only tree available to 𝑟 is the minimal one.
What we want to do instead is skip shrinking of the left

subtree as long as we are not using it, but the fact that it is
not used is currently invisible to the shrinker. Fortunately,
Mokhov et al. taught us how to selectively skip effects: we
need to make Gen a selective functor [16]; the definition is
shown in fig. 7.

Haskell ’23, September 8–9, 2023, Seattle, WA, USA Edsko de Vries

instance Selective Gen where

select e f = Gen $ 𝜆(Inf s l r) → do

let (ma, ls) = run e l

case ma of

Left a → let (f', rs) = run f r

in (f' a, comb s (l : ls) (r : rs))

Right b → (b, comb s (l : ls) [r])

Figure 7. Selective Instance for Gen

Like in the definition of >>= in the Monad instance, we
must run the left generator before we can proceed with the
right generator. However, we do not need the full result: we
just need to know if the right generator is required at all. If
we do not need it, we do not attempt to shrink it.

Any selective functor supports ifS:

ifS :: Selective f ⇒ f Bool → f a → f a → f a

This means that we can define choose simply as

choose :: Gen a → Gen a → Gen a

choose = ifS bool

In the general case, as the value produced by the first
argument to ifS toggles between True and False, we will
toggle between the left and right generator, shrinking them
independently from each other, but never losing progress: if
we switch from left to right and then back to left, shrinking
will continue where it left off.

As an example use case, we canwrite a better list generator
which, unlike the simple definition from section 4.5, can drop
elements from anywhere in the list:

list :: ∀a. Int → Gen a → Gen [a]

list len g = catMaybes <$> replicateM len g'

where g' :: Gen (Maybe a)

g' = choose (pure Nothing) (Just <$> g)

6.2 Overriding Shrinking
Generators are entirely stateless: the only state is the sample
tree, and after every shrink step the generator is simply re-
run. However, if we make one small tweak to the sample tree,
we significantly increase the expressiveness of generators:
we will record whether a sample has been shrunk.

data Sample = . . . | Unshrunk { value :: Word }

This allows us to define shrinkTo, shown in fig. 8. This is
an important generator, which will produce 𝑥 initially, then
shrink to any of the 𝑥𝑠 , and can then shrink no further. The
lines marked (*) are there to ensure that the generator can
produce valid results when run with the minimal sample tree
(zero everywhere) and a sample tree resulting from a different
generator, respectively. This is a very useful combinator; we
will sketch two applications below.

shrinkTo :: ∀a. a → [a] → Gen a

shrinkTo x xs = Gen $ 𝜆(Inf s l r) →
let setNext s' _ = STree (Sample s') l r in

case s of

Unshrunk _ → (x, zipWith setNext [0..] xs)

Sample i → (index i xs, [])

where

index :: Word → [a] → a

index _ [] = x -- *

index _ [y] = y -- *

index 0 (y:_) = y

index n (_:ys) = index (n - 1) ys

toNothing :: Gen a → Gen (Maybe a)

toNothing g = shrinkTo Just [const Nothing] <*> g

Figure 8. User-defined Shrinking

6.2.1 Manual and Integrated Shrinking. It is sometimes
useful to be explicit about shrinking, à la QuickCheck; for
example, this will allow us to take advantage of previously
hard-earned insights on shrinking a particular type of value.

We need two ingredients to do this. First, we need a way
to change a generator so that it does not shrink at all: we are
interested in its initial value only:

initial :: Gen a → Gen a

initial (Gen g) = Gen $ second (const []) . g

The second ingredient is a way to turn a shrink tree into
a generator; for this we need shrinkTo (fig. 8):

fromShrinkTree :: Tree a → Gen a

fromShrinkTree (Node x xs) = do

next ← Nothing `shrinkTo` map Just xs

case next of

Nothing → return x

Just x' → fromShrinkTree x'

It is now easy to provide a way to do manual shrinking:
we get the initial value of the generator, construct the full
shrink tree, and then turn this into a new generator:

shrinkWith :: (a → [a]) → Gen a → Gen a

shrinkWith f gen = do

x ← initial gen

fromShrinkTree $ unfoldTree (𝜆x' → (x', f x')) x

6.2.2 Generating Functions. To illustrate the importance
of generating infinite data structures, we will consider how
to generate and shrink functions, following the approach
proposed by Claessen for QuickCheck [4]. The details are
fiddly; we will only show how Claessen’s approach can be
applied in the context of falsify, and refer the reader to
[4] for additional details. The approach is based on a type of
concrete functions:

falsify: Internal Shrinking Reimagined for Haskell Haskell ’23, September 8–9, 2023, Seattle, WA, USA

data (:->) :: Type → Type → Type where

Nil :: a :-> b

Unit :: b → a :-> b

Table :: Eq a => [(a, b)] → a :-> b

Prod :: a :-> (b :-> c) → (a, b) :-> c

Sum :: a :-> c → b :-> c → Either a b :-> c

Map :: (a→b) → (b→a) → b :-> c → a :-> c

A concrete function is an explicit, possibly partial, map
from inputs to outputs: Nil is the empty description, Unit
describes the constant function, Table is used to to tabulate
(part of) the function’s domain, and Prod and Sum allow to
decompose functions for products and sums respectively.
Finally, Map is used to define functions on 𝑏 in terms of
functions on 𝑎, given an isomorphism between 𝑎 and 𝑏.
When first generated, concrete functions are typically

infinite: they record the output of the function for every value
in the function’s domain. The key insight from Claessen is
that in any given test, the function will only ever be applied
to a finite number of inputs. Thus, we generate the function,
relying on laziness to only demand the values that are used,
and then use shrinking to cut away the parts of the concrete
function that are not used, until we are left with a finite
description of the function. This is not unlike the way that
we are shrinking the sample tree!

Figure 9 shows an excerpt of how function generation
works in falsify. Like in QuickCheck, we cannot write a
single generator that can produce any type of function, but
instead rely on a type class which dispatches on the type
of the argument to the function. The use of toNothing in
table and of toNil in the instance for sums is critical: it
means that the initial function we generate will be able to
respond to all inputs, but will then subsequently allow us
to remove entire chunks of the function description. The
effectiveness of Claessen’s approach is quite astonishing. For
example, consider this example from the demo of the main
falsify library:

prop_listToBool :: Property ()

prop_listToBool = do

Fn (f :: [Word8] → Bool) ←
gen $ Gen.fun (Gen.bool False)

assertBool $ f [3,1,4,2] == f [1,6,1,8]

The library will quite happily report one of two possible
shrunk counter-examples here:

{[1,6,1,8]->True, _->False}

or

{[3,1,4,2]->True, _->False}

A true testament to the power of laziness, and a great
example of why it can be really important to generate large
values before shrinking them to small values (as opposed to
try and exhaustively enumerate values of increasing size).

toNil :: Gen (a :-> b) → Gen (a :-> b)

toNil = fmap (fromMaybe Nil) . toNothing

table :: ∀a b. (Eq a, Enum a, Bounded a)

=> Gen b → Gen (a :-> b)

table g = Table . catMaybes <$>
mapM aux [minBound .. maxBound]

where aux :: a → Gen (Maybe (a, b))

aux x = toNothing $ (x,) <$> g

class Fn a where

fn :: Gen b → Gen (a :-> b)

instance Fn () where fn = fmap Unit

instance Fn Word8 where fn = table

instance (Fn a, Fn b) => Fn (a, b) where

fn = fmap Prod . fn . fn

instance (Fn a, Fn b) => Fn (Either a b) where

fn g = Sum <$> toNil (fn g) <*> toNil (fn g)

instance Fn a => Fn [a] where

fn = fmap (Map f g) . fn

where f [] = Left ()

f (x:xs) = Right (x, xs)

g = either (const []) (uncurry (:))

Figure 9. Generating and Shrinking Functions (excerpt)

QuickCheck depends on two classes to do this: Function,
which constructs concrete functions from regular functions,
and CoArbitrary, which is used to perturb the state of the
random number generator. We use only a single class, which
constructs the concrete function directly. We believe it is
easier to understand: the user never has to think about the
PRNG at all, but just writes generators as usual.

6.3 Testing Shrinking
With manual shrinking, we have to ensure that invariants
established by the generator are preserved by the shrinker.
This is not necessary when using internal shrinking: when
the sample tree is shrunk, we re-run the generator, so any
invariants established by generator must still hold.12
This does not mean we do not have to test shrinking.

We already saw an example of an incorrect generator in
section 5.2: wrongBelow generates a random number below
a certain upper limit, but it does not shrink correctly. We
would like to be able to test whether a generator shrinks
correctly.

12Of course, this is not true when using shrinkWith.

Haskell ’23, September 8–9, 2023, Seattle, WA, USA Edsko de Vries

This means we need a new primitive generator, that gives
us the current sample tree:
peek :: Gen STree

peek = Gen $ 𝜆st -> (st, [])

This allows us to implement the inverse of fromShrinkTree
that we saw in section 6.2.1:
toShrinkTree :: ∀a. Gen a -> Gen (Tree a)

toShrinkTree g = unfoldTree aux . run g <$> peek

where aux :: (a, [STree]) → (a, [(a, [STree])])

aux (x, shrunk) = (x, map (run g) shrunk)

With the shrink tree in hand, we can now generate a
random path through this tree, and then verify that some
property holds between every pair of adjacent values. We do
not show the details here, but instead just show what this
looks packaged up in the main falsify library:
testShrinking (>=) ((`mod` 100) <$> gen Gen.prim)

This property will result in a counterexample like this:
Invalid shrink: 59 ~> 80

Before shrinking: generated "9025540370474205959"

After shrinking: generated "4512770185237102980"

where we can see that the value generated by prim shrunk
correctly, but the output of the generator increased instead.

7 Comparison with Hypothesis
The Hypothesis library taught us to change our perspective
and instead of generation think of parsing, and rather than
shrinking the values produced by the generators instead
shrink the samples that feed into parsers. Apart from this
key idea, however, our approach has little in common with
Hypothesis. In this section we will discuss the differences.

7.1 Representation of Random Samples
The first major difference is that Hypothesis does not use a
tree of samples but rather a list, known as a choice sequence,
which is passed linearly from generator to generator (cf.
section 4.1). An immediately consequence of this choice, and
the reason why none of QuickCheck, Hedgehog, or falsify
follow it, is that it becomes impossible to write generators
for infinite datatypes (such as functions; section 6.2.2), which
might require an unbounded number of random samples.

Another benefit is that we get hierarchical delta debugging
or HDD [15] for free. Consider generating a pair of lists:
pairOfLists :: Gen ([Word], [Word])

pairOfLists = (,) <$> .. <*> ..

Ideally we should be able to shrink the first list without
affecting the second. Hypothesis achieves this by marking
the part of the choice sequence that a generator uses, and
then attempts to respect these boundaries during shrinking.
Since generators call other generators (hence “hierarchical”),
this is recovering some kind of tree!

For us the two generators use different parts of the sample
tree, and so shrinking one will not affect the other, without
special precautions.
There is a user-visible benefit of our representation also.

When Hypothesis first runs a test, it will give it as many
random samples as it needs; this initial choice sequence is
then fed to the shrinker. But this assumes that shrinking can
never result in a demand for more samples; this is typically
true, but not always. Indeed, the Hypothesis paper [13]
points out that shrinking should produce “simpler” values,
not “smaller”, and that this is application dependent.

For example, suppose that we have Maybe a value in some
test, where Nothing means the value is “missing” for some
reason, and is considered an exceptional circumstance. In
this case, Just a value might be “simpler”, and we want a
generator that can shrink from Nothing to Just:

towardsJust :: Gen (Maybe Word)

towardsJust = do

missing ← bool

if missing

then pure Nothing

else Just <$> prim

If missing is initially True we produce Nothing without
asking for further samples. If missing now shrinks to False,
the generator cannot produce Just a value, because no more
samples are available. By contrast, in falsify the generator
will simply look at a part of the sample tree it previously
ignored, and Nothing can shrink to Just 𝑛 for some 𝑛.
Section 4.6 showed an example where shrinking could

not progress because doing so would result in exposing a
different part of the sample tree (which happened not to
correspond to a counter-example). Although this cannot
literally happen in Hypothesis (there are no “unexplored
parts of the sample tree”), something similar can happen:
suppose we have a choice sequence . . . 𝑛 . . . 𝑛′ . . ., where 𝑛
causes a choice between parsers 𝑝 and 𝑝′; it is possible that
we cannot shrink 𝑛 because running 𝑝′ with 𝑛′ would not
result in a counter-example. It is a fundamental limitation of
internal shrinking that shrinking sometimes cannot proceed
because the samples we feed into a generator came from a
unrelated context.

7.2 Shrinking
We now turn to the second major difference between the
Hypothesis approach and ours: shrinking. Shrinking in
falsify operates at the level of individual samples, and will
never drop or reorder samples. This means that shrinking
will never redistribute samples from one parser to another.13

13In the presence of monadic bind shrinking can of course result in parsers
making different choices, thereby repurposing samples that were first used
by one generator for use by another; however, this is local and under the
user’s control.

falsify: Internal Shrinking Reimagined for Haskell Haskell ’23, September 8–9, 2023, Seattle, WA, USA

This is not true in Hypothesis, which considers the choice
sequence to be one large value, of which individual parsers
use chunks. The choice sequence is shrunk with respect to
shortlex ordering [13, Section 2.2]: shorter sequences come
before longer sequences, and sequences of the same length
are ordered lexicographically.

This has important ramifications, some fundamental, and
some that depend on the precise way that shrinking of choice
sequences is implemented. First, lexicographic shrinking
of the choice sequence has essentially unpredictable local
effects on individual generators. For example, dropping a
sample (“shifting up” all samples) or sorting a part of the
choice sequence redistributes samples to different parsers
entirely; this can make it quite difficult to understand why
a specific test is shrinking in a particular way. Second, we
argued in section 7.1 that this ordering is not always the
right one: for some generators, a longer choice sequence
might correspond to a “simpler” value.
In addition to these fundamental issues, we also need

to consider the implementation of lexicographic shrinking.
Hypothesis uses a series of shrinking passes, including
passes which
• reduce some values in the choice sequence
• delete regions from the choice sequence
• sort parts of the choice sequence
• shrink one part of the choice sequence whilst delete
another in the same step

There are even shrinking targeted at specific generators.
The paper mentions that at the time of writing there were 15
such passes in total. This is of course rather ad-hoc, as the
Hypothesis paper readily acknowledges [13, Section 3.1]:

“These passes tend to accumulate organically
over time, based on examples we encounter that
we feel the reducer should be able to handle and
cannot. Several of them are quite specific, but
most are generic, and the combination seems
to produce good results on most generators we
encounter.”

This reveals a fundamental difference in design philosophy.
The passes in Hypothesis are designed so that even poorly
written generators have a chance of shrinking reasonably
well; in falsify the author of a generator has a greater
responsibility. To a degree this is made less onerous by a
suite of standard generators, but it is true that poorly written
generators in falsify will probably shrink poorly.

On the other hand, when a carefully constructed generator
is shrinking poorly, there is a better chance of being able
to improve it in falsify, where the shrinking behaviour of
a generator can always be reduced to first principles: one
merely needs to consider how the values produced by a
generator shrink as the values produced by the generators it
depends on shrink. At the root of this dependency tree sits
prim, which produces values that shrink towards zero.

There is no need to consider how an ever changing list of
reduction passes affects your generator, nor is there a danger
of a carefully designed generator suddenly shrinking much
more poorly because some choice sequence reduction pass
was added, removed, or changed.

8 Related Work
8.1 Aside: Type-based versus Value-based Generators
In this paper we distinguished between manual (section 2),
integrated (section 3), and internal shrinking (section 4).
There is an orthogonal distinction we can make, between
a type-based and a value-based approach. In a type-based
approach, a generator is associated with a type through a
type class instance; this is the default in QuickCheck:

instance HasGenerator a where

generator :: Gen a

No such class exists in a value based approach, where
properties must list generators explicitly. There are good
arguments for doing this, as Jacob Stanley discusses in an
excellent presentation [20]; it is the default in Hedgehog,
Hypothesis and falsify. However, these are defaults only,
and the choice is mostly independent of the approach to
shrinking. We can define a type class in Hedgehog that pro-
duces a default generator for any type, and conversely, we
can specify explicit generators in QuickCheck.

This is by means of context for a blog post “Integrated vs
type based shrinking”14 by MacIver, author of Hypothesis.
In this blog post MacIver makes the case that integrated
is better than manual shrinking, because invariants of the
generator are automatically preserved (cf. section 3.1), and
that value-based is better than type-based, for many of the
same reasons that Stanley points out. However, integrated
versus type based is a false dichotomy: these are independent
choices. This has led to some libraries claiming to be “like
Hypothesis” because they used a value-based approach, not
because they used internal shrinking. It is important to keep
this confusion in mind when evaluating related work.

8.2 Manual Shrinking
QuickCheck was introduced in a seminal paper by Claessen
and Hughes [5]. Interestingly, that paper put no emphasis on
shrinking, relegating it to a short section on “pretty printing”
[5, Section 5.4]; it got added to QuickCheck only in version 2.
However, its critical importance is now canon (e.g., [9]).

We discussed manual shrinking in section 2. Proponents of
integrated shrinking sometimes claim that it is strictly better
than manual shrinking because, they claim, shrinking comes
for free, “without any extra developer effort to implement a
shrinking function”15.

14https://hypothesis.works/articles/integrated-shrinking/
15This quote is from “QuickCheck, Hedgehog, Validity”, Tom Sydney Kerck-
hove, 2019. Stanley makes a similar remark in his Lambda Jam presentation.

Haskell ’23, September 8–9, 2023, Seattle, WA, USA Edsko de Vries

We saw in section 3 that this is often not the case, due to
problems with monadic bind. Internal shrinking addresses
this to some degree, although we discussed its limitations in
section 4.6, and we saw in section 5 that we must still take
care in how we write our generators.
Moreover, manual shrinking has advantages too. If we

discover that a generator is not shrinking well when we
discover a bug, it is helpful if shrinking is independent from
the generator: modifying the generator may change which
counterexample it finds, if indeed it still finds one at all.
Libraries in this category include16 junit-quickcheck

for Java, FsCheck [1] for .NET, ScalaCheck for Scala, PropEr
[18] and Triq for Erlang, JSVerify for JavaScript, kotest
for Kotlin, QuickChick [6] for Coq, base_quickcheck for
O’Caml, quickcheck for Rust, gopter for Go, and others;
there are too many to provide an exhaustive list here. They
are mostly a straight-forward adaptation of QuickCheck.

8.3 Integrated Shrinking
Integrated shrinking was introduced in QuviQ QuickCheck
for Erlang [3, 8]. After attending a course taught by John
Hughes, Reid Draper ported the approach to test.check for
Clojure (then called simplecheck); in the Haskell world it
is mostly known from the library Hedgehog, which has also
been ported to F# and C#, R, and Scala. In O’Caml, recent
versions of qcheck are also based on integrated shrinking.

We can classify proptest for Rust also as implementing
integrated shrinking, although the details are different as it is
stateful rather than tree-based. But there are equivalents of
Functor, Applicative and Monad instances, and here too
the monad instance exhibits the poor shrinking problem that
we discussed in section 3.2. The library claims to be “inspired
by Hypothesis”, but it does not implement internal shrinking;
this is due to the confusion we discussed in section 8.1.
The situation with jqwik for Java and Kotlin is similar.

It suffers from the same confusion; its user manual states
“jqwik’s shrinking approach is called integrated shrinking,
as opposed to type-based shrinking which most property-
based testing tools use.” Although it then refers to the blog
post by MacIver, it does not implement internal shrinking,
and the user manual warns that monadic bind (“flat mapping”
in Java terminology) results in poor shrinking.

8.4 Internal Shrinking
Internal shrinking was introduced in Hypothesis [13, 14].
In addition, the Hypothesis author implemented a minimal
library demonstrating the core ideas; known as minithesis,
this library been ported to various other languages. Martin
Janiczek ported the approach in the elm-explorations/
test library in Elm, which is based on Hypothesis-style
internal shrinking as of version 2.0.

16We include scientific references where they exist, but do not provide URLs
to source code to save space.

The only other library we are aware of that is based on
internal shrinking is Theft for C, which introduced support
for “auto-shrinking” in version 0.3. Its approach is similar to
Hypothesis, manipulating a random bit stream, with various
passes and heuristics to modify it, and using an analogue to
getbits to demarcate sections of the random bit stream.
All of these libraries are explicit implementations of the

ideas in Hypothesis, and so our discussion of the differences
between falsify and Hypothesis in section 7 applies to all.
One interesting aspect of Hypothesis is that it supports

targeted search [12] (as opposed to purely randomgeneration
of test inputs). This is a large area in its own right; it would
be interesting to see how this research applies in our context.

8.5 No Shrinking
Some libraries for property based testing do not support any
kind of shrinking at all. In some cases, this is because these
are libraries that are designed to exhaustively explore small
test cases; examples include SmallCheck for Haskell [19]
and GAST for Clean [11]. This is a complementary approach,
not a competing one.

Other packages do not attempt to be exhaustive, but try to
generate examples of increasing size, hoping that this suffices.
Randomised testing in PLT Redex [10], QC for C, RUTE-J [2]
for Java, crowbar for O’Caml, and quick for Go fall into
this category. Experience with QuickCheck and Hedgehog
suggests however that this approach is limited: both of these
libraries implement an increasing size parameter in addition
to shrinking.

8.6 Other Related Work
The essence of internal shrinking is the interpretation of a
generator of random values as a parser of samples from a
random number source. Goldstein and Pierce [7] formalise
this relationship. They focus on the representation of the
generator and its properties; there is no analogue in their
paper to our sample tree concept.

Property based testing is a huge research area; a full survey
is well beyond the scope of this paper. However, we have no
reason to believe this work is in any way dependent on the
specific way that shrinking works.
In the world of imperative programming there is a lot of

research on “parameterised unit tests” and the closely related
topic “fuzzing”. These approaches are also based on randomly
generated inputs and so here too shrinking (“minimisation”)
is important. Generation tends to be done by the framework
rather than by the programmer, however, so concepts such as
“compositional generators” or “separating generation from
shrinking” do not apply; this makes a comparison between
systems of this kind and our work difficult. Similarly, there
is work on automatically deriving generators and shrinkers
for property based testing; since the purpose of this work is
to derive rather than write generators, our work on internal
shrinking is probably of limited value in such a setting.

falsify: Internal Shrinking Reimagined for Haskell Haskell ’23, September 8–9, 2023, Seattle, WA, USA

Property based testing can be regarded as an optimisation
problem: find the smallest counter-example to a property;
shrinking is then an optimisation technique. Seen in this
light, perhaps the work by Mu and Oliveira [17] can be used
to put shrinking on a more formal footing. They define an
operator 𝑆 ↾ 𝑅, defined in terms of a Galois connection,
where intuitively 𝑆 is the set of all solutions to a problem
(“all counter-examples”), 𝑅 ranks them (“simpler counter-
example”), and 𝑆 ↾ 𝑅 picks the best one; indeed, they even
pronounce this operator as “𝑆 shrunk by 𝑅”. Exploring this
connection further is future work.

9 Conclusions
The Hypothesis library for property based testing in Python
showed that if we do not think of a generator as producing
a value from a pseudo-random number generator but as a
parser of the sampled produced by that PRNG, we no longer
need to shrink values: we can just shrink the PRNG samples
and re-run the generator. In this paper we ported this idea
to Haskell; while inspired by Hypothesis, the details are
quite different. In particular, shrinking behaviour in falsify
is more predictable, more controllable (through the use of
selective functors), and supports the generation of infinite
data structures (such as functions).

Acknowledgements
The author was motivated to do this research by the talk
“How to do Property-based Testing Shrinkers Right” by Mar-
tin Janiczek at Haskell Exchange 2022; Martin has also pro-
vided valuable feedback on drafts of this paper. The discus-
sion of the history of manual and integrated shrinking in
section 8 benefited from clarification by John Hughes. Fi-
nally, the author thanks Oleg Grenrus, Rodrigo Mesquita, Pi
Delport, Jon Fowler as well as the anonymous reviewers for
their valuable feedback and comments.

References
[1] B. K. Aichernig and R. Schumi. 2016. Property-Based Testing with

FsCheck by Deriving Properties from Business Rule Models. In ICSTW
’16. https://doi.org/10.1109/ICSTW.2016.24

[2] J. H. Andrews, S. Haldar, Yong Lei, and Felix Chun Hang Li. 2006.
Tool Support for Randomized Unit Testing. In RT ’06. ACM. https:
//doi.org/10.1145/1145735.1145741

[3] T. Arts, J. Hughes, J. Johansson, and U. Wiger. 2006. Testing Telecoms
Software with Quviq QuickCheck. In ERLANG ’06. ACM. https://doi.

org/10.1145/1159789.1159792
[4] K. Claessen. 2012. Shrinking and Showing Functions. In Haskell ’12.

ACM. https://doi.org/10.1145/2430532.2364516
[5] K. Claessen and J. Hughes. 2000. QuickCheck: A Lightweight Tool

for Random Testing of Haskell Programs. In ICFP ’00. ACM. https:
//doi.org/10.1145/357766.351266

[6] M. Denes, C. Hritcu, L. Lampropoulos, Z. Paraskevopoulou, and B. C.
Pierce. 2014. QuickChick: Property-based testing for Coq. In The Coq
Workshop.

[7] H. Goldstein and B. C. Pierce. 2022. Parsing Randomness. Proc. ACM
Program. Lang. 6 (Oct 2022). https://doi.org/10.1145/3563291

[8] J. Hughes. 2007. QuickCheck Testing for Fun and Profit. In PADL ’07.
Springer. https://doi.org/10.1007/978-3-540-69611-7_1

[9] J. Hughes. 2016. Experiences with QuickCheck: Testing the Hard Stuff
and Staying Sane. In LNTCS 9600. Springer. https://doi.org/10.1007/
978-3-319-30936-1_9

[10] C. Klein and Robert B. Findler. 2009. Randomized testing in PLT
Redex. In Workshop on Scheme and Functional Programming. Cal Poly
Technical Report CPSLO-CSC-09-03.

[11] P. Koopman, A. Alimarine, J. Tretmans, and R. Plasmeijer. 2003. GAST:
Generic Automated Software Testing. In IFL ’03, R. Peña and T. Arts
(Eds.). Springer. https://doi.org/10.1007/3-540-44854-3_6

[12] A. Löscher and K. Sagonas. 2017. Targeted Property-Based Testing. In
ISSTA ’17. ACM. https://doi.org/10.1145/3092703.3092711

[13] D. R. MacIver and A. F. Donaldson. 2020. Test-Case Reduction via Test-
Case Generation: Insights from the Hypothesis Reducer. In ECOOP
’20, R. Hirschfeld and T. Pape (Eds.). Schloss Dagstuhl. https://doi.org/
10.4230/LIPIcs.ECOOP.2020.13

[14] D. R. MacIver and Z. Hatfield-Dodds et al. 2019. Hypothesis: A new
approach to property-based testing. Journal of Open Source Software 4,
43 (2019). https://doi.org/10.21105/joss.01891

[15] G. Misherghi and Zhendong Su. 2006. HDD: Hierarchical Delta De-
bugging. In ICSE ’06. ACM. https://doi.org/10.1145/1134285.1134307

[16] A. Mokhov, G. Lukyanov, S. Marlow, and J. Dimino. 2019. Selective
Applicative Functors. Proc. ACM Program. Lang. 3 (Jul 2019). https:
//doi.org/10.1145/3341694

[17] Shin-Cheng Mu and J. N. Oliveira. 2012. Programming from Galois
connections. The Journal of Logic and Algebraic Programming 81, 6
(2012). https://doi.org/10.1007/978-3-642-21070-9_22

[18] M. Papadakis and K. Sagonas. 2011. A PropEr Integration of Types
and Function Specifications with Property-Based Testing. In Erlang
’11. ACM. https://doi.org/10.1145/2034654.2034663

[19] C. Runciman, M. Naylor, and F. Lindblad. 2008. Smallcheck and Lazy
Smallcheck: Automatic Exhaustive Testing for Small Values. SIGPLAN
Not. 44, 2 (Sep 2008). https://doi.org/10.1145/1411286.1411292

[20] J. Stanley. 2017. Gens N’ Roses: Appetite for Reduction. Presentation
at Lambda Jam 2017.

[21] Guy L. Steele, Doug Lea, and Christine H. Flood. 2014. Fast Splittable
Pseudorandom Number Generators. In OOPSLA ’14. ACM. https:
//doi.org/10.1145/2660193.2660195

Received 2023-06-01; accepted 2023-07-04

https://doi.org/10.1109/ICSTW.2016.24
https://doi.org/10.1145/1145735.1145741
https://doi.org/10.1145/1145735.1145741
https://doi.org/10.1145/1159789.1159792
https://doi.org/10.1145/1159789.1159792
https://doi.org/10.1145/2430532.2364516
https://doi.org/10.1145/357766.351266
https://doi.org/10.1145/357766.351266
https://doi.org/10.1145/3563291
https://doi.org/10.1007/978-3-540-69611-7_1
https://doi.org/10.1007/978-3-319-30936-1_9
https://doi.org/10.1007/978-3-319-30936-1_9
https://doi.org/10.1007/3-540-44854-3_6
https://doi.org/10.1145/3092703.3092711
https://doi.org/10.4230/LIPIcs.ECOOP.2020.13
https://doi.org/10.4230/LIPIcs.ECOOP.2020.13
https://doi.org/10.21105/joss.01891
https://doi.org/10.1145/1134285.1134307
https://doi.org/10.1145/3341694
https://doi.org/10.1145/3341694
https://doi.org/10.1007/978-3-642-21070-9_22
https://doi.org/10.1145/2034654.2034663
https://doi.org/10.1145/1411286.1411292
https://doi.org/10.1145/2660193.2660195
https://doi.org/10.1145/2660193.2660195

	Abstract
	1 Introduction
	2 Manual Shrinking
	3 Integrated Shrinking
	3.1 Shrink Trees
	3.2 Monadic Composition

	4 Internal Shrinking: falsify Style
	4.1 Generation versus Parsing
	4.2 Sample Tree
	4.3 Generator
	4.4 Monad Instance
	4.5 Comparison with Integrated Shrinking
	4.6 Limitations
	4.7 Monad Laws

	5 Example Generators
	5.1 Booleans
	5.2 Limited Range
	5.3 Signed Fractions

	6 Extensions
	6.1 Selective Functors
	6.2 Overriding Shrinking
	6.3 Testing Shrinking

	7 Comparison with Hypothesis
	7.1 Representation of Random Samples
	7.2 Shrinking

	8 Related Work
	8.1 Aside: Type-based versus Value-based Generators
	8.2 Manual Shrinking
	8.3 Integrated Shrinking
	8.4 Internal Shrinking
	8.5 No Shrinking
	8.6 Other Related Work

	9 Conclusions
	References

