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Abstract

Interfacing Haskell with C libraries is a common necessity,
but the manual creation of bindings is both error-prone and
laborious. We present hs-bindgen, a new tool that provides
fully automatic generation of Haskell FFI bindings directly
from C header files.
We introduce a novel method for describing bindings

through binding specifications, providing a compositional
method for using bindings for one library in bindings for an-
other. Furthermore, we define a domain-specific language in
Haskell to represent C expressions found in C macros, along
with a corresponding type inference algorithm, to allow us
to generate bindings for functions defined as C macros.
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1 Introduction

Haskell supports interaction with other programming
languages through its foreign function interface or FFI [13,
17], part of the language specification since version 2010 [14].
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Probably the most important supported foreign language is
C, with JavaScript perhaps coming in second place due to
its importance for the WebAssembly [6] backend. In this
paper we will focus exclusively on C, though some of the
techniques we describe may apply in other contexts as well.

Haskell code can be made aware of functions written in C
through a “foreign import” declaration. For example,

void print_coords(int x, int y) {

printf("{%d, %d}\n", x, y);

}

can be imported as

foreign import ccall "print_coords"

print_coords :: CInt → CInt → IO ()

and then called like any other function.
While C’s primitive types such as int are supported out

of the box, oftentimes C functions use compound types
such as structs, enums and unions. For example, instead
of print_coords, which takes separate 𝑥 and 𝑦 parameters,
we might have

struct point { int x; int y; };

void print_point(struct point* p) {

printf("{%d, %d}\n", p→x, p→y);

}

In cases like this we must define a Haskell type which cor-
responds to this C type, as well as a way to serialise the
Haskell representation to the (in-memory) representation
expected by C functions. We do this by giving an instance of
the Storable type class, which describes how to marshall
between Haskell types and C types; see fig. 1.
Tooling exists that can help with the technical details of

such bindings, filling in information such as size and align-
ment (see section 7). However, as this small example already
demonstrates, even with such tooling, writing bindings can
be quite laborious—albeit not conceptually difficult.
Moreover, not all functions are supported; for example,

there is no support for passing structs by value:

void print_byval(struct point p) {..}
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data Point = Point {

point_x :: CInt

, point_y :: CInt

}

instance Storable Point where

sizeOf _ = 8

alignment _ = 4

peek ptr =

pure Point

<*> peekByteOff ptr 0

<*> peekByteOff ptr 4

poke ptr (Point x y) = do

pokeByteOff ptr 0 x

pokeByteOff ptr 4 y

foreign import ccall "print_point"

print_point :: Ptr Point → IO ()

Figure 1. Using Compound Types

Calling such functions usually involves writing a C wrapper
that accepts the struct by reference, then writing a Haskell
binding for the wrapper instead of the original function,
making sure to deal with memory management. Again, not
conceptually difficult, but tedious—especially when binding
against large C libraries.
In this paper, we describe hs-bindgen, a new tool that

can generate such bindings automatically, including foreign
import declarations, marshalling code (Storable instances),
and C wrappers. As it turns out, doing so in a completely
automatic way requires careful design (section 2), and while
it is of course not as difficult as compilation, we make use
of several techniques from compiler design such as use-decl
graphs (section 3.1), type inference (section 5.3), and others.
Consequently, hs-bindgen is structured like a compiler,

with a frontend that processes the C source (section 3), which
is followed by a backend generating Haskell code (section 4).
We take special care to deal with C macros (section 5). In
section 6 we introduce binding specifications, which enable
us to re-use previously generated bindings, as well as guide
code generation. Finally, we compare to related work in
section 7 and conclude in section 8.

2 Design

Before we delve into the technical details, it is useful to take
a moment to describe our overall design philosophy.

2.1 Design Principles

We start with the design principle that motivated this work:

Design principle 1: Automation.

We should be able to produce bindings without user
input. Overrides are possible, but not required.

The principle of automation departs from most existing
Haskell tools that aid in generating interface code (section 7),
where it is the users who write bindings, using the tool to
fill in specific details. In contrast, we sought to design a tool
that automatically generates bindings, optionally allowing
the user to override specific details.
Users can influence the generation process by changing

global configuration parameters and through the use of
(input) binding specifications (section 6.2). We also make
hs-bindgen available as a Haskell library (in addition to the
command line interface), so that in principle every aspect of
generation can be tweaked. However, it should be possible
for users to rely on sensible defaults, leaving hs-bindgen to
produce bindings without any configuration. The aim of zero
configuration motivates many of our decisions, including
name generation (section 3.3), type inference for macros (sec-
tion 5.3), and (external) binding specifications (section 6.1).

Design principle 2: Preservation of semantics.

The semantics of the C code, both explicit and implicit,
should be preserved.

At some level this principle is obvious: clearly we need to
ensure that the way we call C functions and the way that
we marshall C types matches the C semantics. However,
there are less obvious consequences also. For example, C
allows the definition of type aliases through typedefs; we
choose to translate such aliases to Haskell newtypes rather
than expanding them (section 4.4), to preserve the implied
semantics of the alias.

Design principle 3: Predictability.

The code generated by hs-bindgen should be clearly
predictable from its corresponding C code.

Predictability has practical ramifications. For example,
since C has anonymous types and Haskell does not, those
anonymous types must be given a name (section 3.2). We
could produce an arbitrary name, perhaps using an internal
counter, but if we did that, minor changes to the C input
could result in entirely different generated Haskell code.
Since C bindings are not standalone, but are intended for
integration into larger systems, this kind of instability of the
generated bindings could rapidly make the maintenance of
these systems intractable.

Much like a progress/soundness theorem in a more formal
setting, principle 1, Automation, states that we can always
generate something, and principles 2, Preservation, and 3,
Predictability state that we generate something reasonable.

2.2 Platform (In)dependence

Suppose we have a C struct (record) definition containing
just an integer value:
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struct val { int x };

When we generate code for this, we immediately have to
answer two (related) questions:

1. What is the size of this integer? 4 bytes, 8 bytes, more,
less? On which platform?

2. Which Haskell type should we use to represent the
integer: CInt, Int32, Int64, another type?

To answer these questions, it is useful to be precise. Cross-
compilation is the compilation of a program on a machine
with a given computer architecture for another machine with
a different computer architecture. A typical use-case of cross-
compilation is the compilation of programs for embedded
devices which do not have the computation requirements to
compile their own programs. We refer to a machine and its
computer architecture as a platform.

When generating bindings, there is one more distinction
to make: the platform onwhich hs-bindgen runs may not be
the platform on which the generated bindings are compiled.
Unfortunately, there is no standardised nomenclature in this
area; wewill refer to the platform running the tool generating
bindings as the host platform, the platform compiling the
generated code as the compilation platform, and the platform
running the compiled code as the target platform. All of these
designations are from the perspective of hs-bindgen; from
the perspective of the compiler, it runs on the host, and
compiles for a certain target, and from the perspective of the
generated code, its “host” is simply the platform it runs on.

Orthogonally, we differentiate between the interface of the
generated code and its implementation. The interface is the
totality of the function signatures and type declarations that
users make use of when writing code using generated bind-
ings. The implementation refers to class instances, function
wrappers (section 4.5), and other glue code.

Let us now return to our two questions.

2.2.1 Implementation. In simple cases it might be pos-
sible to generate platform-independent code. For example,
we could generate marshalling code for val that relies on
hsc2hs (section 7.2) to fill in the details:

instance Storable Val where

sizeOf _ = #size struct Val

-- other members omitted

Unfortunately, use of the C pre-processor (CPP) to perform
conditional compilation in Cmakes this difficult; for example,
the C header might contain

#ifdef __aarch64__

...

#endif

Such conditionals can be arbitrarily complex; perhaps it
would be possible to generate bindings that precisely mirror
the conditions, but this seems a daunting task. It would also

make it significantly more difficult to use tooling for working
with C (section 3), which are not designed for this workflow.

We therefore opt to produce platform-specific code. This
means that the distinction between the host platform and the
compilation platform disappears, and going forward we will
simply refer to the host platform (often this is also the target
platform, as most users do not need cross-compilation).

Practically speaking, it means that hs-bindgen is designed
to be run as part of compilation: the generated bindings
should be treated as build artefacts. For val, the marshalling
code will reflect a choice of platform:

instance Storable Val where

sizeOf _ = 8

2.2.2 Interface. Having decided that int is 8 bytes on the
target platform, we can still choose which Haskell datatype
we generate. The two most natural choices are

data Val = Val { or data Val = Val {

x :: Int64 x :: CInt

} }

We opt for the latter, and choose CInt. We can motivate
this choice using our design principles. First, CInt better
preserves the semantics of the C code: int in C is machine-
dependent, and so is CInt in Haskell. Choosing Int64 would
incorrectly suggest that the C interface is designed to always
work with 64-bit values. Conversely, the use of int in the
C library means that it promises that it can work across
multiple architectures; that promise is lost if we use Int64.
Second, CInt is easier to predict. If the generated API is

platform dependent, it is more difficult for users to know
what it will be (predictability of the implementation is not
important: it does not directly affect users). One important
advantage of this predictability is that it minimises the risk
that code written against the generated bindings on one
platform does not compile on another. Unfortunately, this
risk can only be reduced, not eliminated, due to conditional
compilation.

3 Frontend

Writing a parser for the complete C language with its many
extensions, as well as logic that determines the layout of
structs, the types underlying enums, etc.; and doing all of
that across multiple platforms, is an enormous undertaking
which is well beyond the scope of a tool such as hs-bindgen.
Fortunately, we have an advantage that authors of previous
tooling in the Haskell ecosystem (section 7) did not have: the
availability of a modern C toolchain as a library: clang [12].
The first step in our processing pipeline uses clang to

build a pure Haskell representation of clang’s internal ab-
stract syntax tree (AST), extracting the information we need.
During parsing we also construct a graph denoting which C
headers include which other C headers. We use the include
graph to resolve binding specifications (section 6).
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We process this AST in several passes which incrementally
annotate nodes of the tree with additional information. To
achieve this, and to avoid needing many slightly different
copies of the AST, we use a trees-that-grow style [15] design.
We describe some passes in the remainder of this section,
but postpone the description of more involved passes to
dedicated sections:

1. Sort declarations with the use-decl graph (section 3.1)
2. Handle macros (section 5)
3. Rename anonymous declarations (section 3.2)
4. Resolve binding specifications (section 6)
5. Assign Haskell names (section 3.3)

We discuss some drawbacks of using clang in section 3.4.

3.1 Use-decl Graph
After constructing the AST, we build a use-decl graph. Nodes
in the graph correspond to declarations, directed edges record
use sites, and edge labels clarify exactly how a declaration is
used. For example, consider this C declaration:

1 typedef struct {

2 struct {

3 struct { int a; } *innermost;

4 } inner1;

5 struct { int b; } inner2;

6 int c;

7 } *toplevel;

This example contains four anonymous struct declarations,
on lines 1, 2, 3 and 5. The resulting use-decl graph is depicted
in fig. 2; initially, anonymous declarations are assigned an
identifier based on their location in the source.
A first use of this graph is to sort all declarations so that

types are always declared before they are used (at least, be-
fore they are used by value; for pointers, the type declaration
is not needed). This is mostly true for C, but inline type dec-
larations like in this example (anonymous or not) are an
exception, and we find it useful to enforce this invariant for
all declarations.

3.2 Naming Anonymous Declarations

Unlike C, Haskell does not support anonymous record dec-
larations out of the box. There are libraries such as vinyl1
and large-anon2 that implement them, but each comes with
their own set of drawbacks that not all users might be happy
with (advanced types, use of a compiler plugin, etc.). The
code produced by hs-bindgen therefore does not depend
on these external packages, although in principle we could
optionally make use of them.

This means that we must construct names for anonymous
declarations, and as discussed in section 2.1, it is important
that we do so in a predictable way. In some cases there is

1https://hackage.haskell.org/package/vinyl
2https://hackage.haskell.org/package/large-anon

:3

:2

:1

:5

"toplevel"

UsedInField ByRef

"innermost"

UsedInField ByVal

"inner1"

UsedInField ByVal

"inner2"

UsedInTypedef ByRef

Figure 2. Example use-decl Graph

an obvious candidate, for example, a common pattern is a
typedef around an anonymous struct:

typedef struct { .. } foo;

In this case, we can use the name of the typedef for the
struct (and there is no need to distinguish between the
name of the type defined by typedef and the name of the
struct in the generated Haskell code).
In general, we employ the use-decl graph to analyse the

use site of an anonymous declaration. Given an anonymous
declaration and its use site3, we apply the following rules:

1. When the anonymous declaration is used by value in
a typedef, the struct gets the name of the typedef,
and we do not generate a separate Haskell type for the
typedef.

2. When the anonymous declaration is used by reference
in a typedef, we append “_Deref” to the name of the
typedef.

3. When an anonymous type is declared as part of a
struct field, it is given the name which is the concate-
nation of the enclosing type (with the same naming
rules applied recursively) and the name of the field.

For the running example (with use-decl graph in fig. 2),
this results in the following Haskell names:

• Toplevel, corresponding to the C typedef
• Toplevel_Deref, for the outermost struct

3An anonymous declaration can have at most one use site, since there is
no way to reference it. Anonymous declarations without any use sites we
simply omit.

https://hackage.haskell.org/package/vinyl
https://hackage.haskell.org/package/large-anon
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• Toplevel_Deref_inner1 and (..)_inner2 for the two
“middle level” structs, and for the innermost struct
Toplevel_Deref_inner1_innermost.

3.3 Generating Haskell Names

In order to produce valid Haskell code, we must “mangle”
the C names so that they conform to Haskell’s naming rules,
the most important of which is that types must start with an
uppercase letter, and values must not start with an uppercase
letter.4 This is not always trivial. For example, some Unicode
characters considered to be “uppercase” do not have lower-
case equivalents, and there are some other Unicode-related
differences between C and Haskell to be taken care of also;
these technical details are not particularly interesting and
we refer the interested reader to the implementation instead.

In the context of name mangling, we seek to adhere to
design principle 1, Automation, in that:

• we should always be able to generate a Haskell name,
while allowing the user to override names (section 6);

• name mangling should not result in name clashes (re-
solving clashes would require user input) while still
staying as close as possible to the original C names
(design principle 3, Predictability).

3.4 Limitations of Using clang

Relying on clang has an important drawback: if the library
we are generating bindings for is compiled with a different
compiler than clang (such as gcc), certain details we get
from clang (such as the precise layouts of structs, needed
to generate marshalling code) might be incompatible with
decisions made by the other compiler. Ultimately this would
result in incorrect generated code.
Although the same problem arises whenever multiple

C compilers are used together, it does mean that the use
of hs-bindgen technically dictates the consistent usage of
clang. This requirement may feel like a serious limitation,
but fortunately in practice it is seldom an issue: the cases
where divergence is possible are rare, and while we cannot
remedy the situation when divergence does arise, we can
at least attempt to detect it. As part of binding generation,
hs-bindgen can generate a test suite that tests the generated
marshalling code: we produce some values in Haskell, pass
those values to a C function, which then asserts that the
values it gets passed are correct and conform to the known
expectations.

4This is the rule used by GHC, which is subtly different from the rule in the
Haskell Report [14, Section 2.4, Identifiers and Operators], which requires
that values must start with a lowercase letter. For letters from the Latin
alphabet this is equivalent, but this is not true in general; for example,
Chinese characters are considered to be neither uppercase nor lowercase.

4 Backend

The backend is responsible for generating Haskell code. In
this section, we highlight key examples and illustrate some
of its more intricate design decisions.
In some cases, the code produced by hs-bindgen requires
specialised infrastructure, which we provide in a library
designed for this purpose called hs-bindgen-runtime. We
will introduce the relevant parts of this infrastructure where
needed.

4.1 Structs

We saw in section 1 that the generated bindings for a simple C
struct are a Haskell record datatype together with a Storable
instance. In addition, we can also generate other instances
such as Eq, Show etc.; we keep track of which instances are
available for the types of the fields in order to determine
which instances apply to the overall record.

However, some features of C structs must be addressed
separately; we will turn our attention to these now.

4.1.1 Flexible Array Members. A flexible array member
(or FLAM) is an array of unspecified size, which must be the
last field in a struct. For example:

struct surname {int len; char data [];};

In C, the sizeof operator, when applied to a structure with
a FLAM, gives the size of the structure as if the FLAM were
empty. In a similar spirit, the generated Haskell data type
only contains the fixed-size members of the structure:

data Surname = Surname {

surname_len :: CInt

}

To recover the full datatype, hs-bindgen-runtime offers a
type combinator called WithFlexibleArrayMember; values of
such a struct-with-FLAM can be serialised, provided two
instances are available:

• An instance of HasFlexibleArrayMember determines
the offset of the FLAM within the struct. This instance
is generated by hs-bindgen.

• An instance of HasFlexibleArrayLength determines
the size of the FLAM, given the fixed-size part of the
struct. This instance must be provided by the user.

4.1.2 Bitfields. Bitfields are fields of a struct with a size
specified in bits. For example:

struct room {

char window_id; int blinds_open : 1;

char projector_id; int power_mode : 2;

};

For convenient access, we turn these bitfields into regular
fields (though we should perhaps do a better job at giving
them more precise types):
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data Room = Room {

room_window_id :: CChar

, room_blinds_open :: CInt

, room_projector_id :: CChar

, room_power_mode :: CInt

}

The specific memory layout only becomes apparent in the
generated Storable instance, which must of course respect
the C layout.

4.2 Enums

C enums give names to values of an underlying type, usually
(but not always) unsigned int. For example

enum HTTP_status {

ok = 200

, bad_request = 400

};

These values need not be consecutive or ordered, and the
same value may even be assigned multiple names. Moreover,
although HTTP_status can be used as a type, it is important
to note that this is only a hint: it does not guarantee that the
only possibles values are those that have been given a name.

4.2.1 Representation. We might expect an enum to be
represented by an algebraic sum type with one constructor
per name, but this is ruled out by the fact that we have values
without a name, as well as values with multiple names.

Instead we use a newtype around the enum’s underlying
type, with a set of patterns synonyms [18] for the named
values. For our running example, we generate

newtype HTTP_status = HTTP_status CUInt

as well as

pattern Ok, Bad_request :: HTTP_status

pattern Ok = HTTP_status 200

pattern Bad_request = HTTP_status 400

Crucially, this set of pattern synonyms is not declared to be
complete: other values are possible.

4.2.2 Enum and Bounded Instances. While we are on the
topic of failed expectations, hs-bindgen does not provide
an instance for the Haskell Enum type class by default. Enum
requires us to define a successor relation, but it is not clear
from the types what that relation should be: is the successor
of value 200 (“Ok”) 400 (“Bad_request”), or 201 (a value with
no name)? Similar concerns apply to Bounded, which picks
a minimum and maximum value of the type; should those
be 200 and 400 respectively, or should they be the minimum
and maximum value of the underlying integral type?

Instead, hs-bindgen-runtime provides a type class called
CEnum. This type class has several members, but the most
important one is a method that returns the set of names of
the enum:

class CEnum a where

declaredValues ::

proxy a → DeclaredValues a

-- other members omitted

The library offers deriving-via [1] support for users who
choose to imbue the enum with a successor relation implied
by the list of names (so that the successor of 200 is 400);
alternatively, they can use newtype deriving, in which case
the successor of 200 would be 201. Likewise, users can choose
to derive Bounded via CEnum, or use newtype deriving to
inherit the Bounded instance from the underlying type.

4.3 Unions

C unions do not carry a tag recordingwhich alternative of the
union is used. Indeed, some unions don’t encode alternatives,
but rather multiple views on the same data. This means they
do not map onto Haskell sum types. Instead, we represent a
union as an opaque type type with setters and getters. For
example,

union occupation {

struct student {..} student;

struct employee {..} employee;

};

is represented by

newtype Occupation -- opaque

instance Storable Occupation where ..

get_occupation_student ::

Occupation → Student

set_occupation_student ::

Student → Occupation → Occupation

and similarly for Employee. Unions are usually embedded
in larger types (typically structs) which provide context for
determining which alternative applies; since hs-bindgen
has no way of reconstructing this logic, it is up to the users
to use the appropriate getter and setter functions.

4.4 Typedefs

Typedefs in C are similar to type aliases in Haskell: they
give a new name to an existing type, often used to provide
additional semantic information. For example, the C standard
library defines a type for the system time in time.h

typedef long clock_t;

As noted in section 2.1 when we discussed design principle 2,
“preservation of semantics”, it is important that we reflect
these typedefs in the Haskell, rather than expanding them.
That still leaves us with the choice to represent these as
Haskell type aliases or as newtypes. We opt for the latter,
as this gives users the option of providing different type
class instances (for instance, perhaps the Show instance for
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clock_t could show something more informative than just
the integer value):

newtype Clock_t = Clock_t CLong

The use of newtype also results in the usual improved type
safety over type aliases, requiring explicit coercion between
Clock_t and its underlying representation.

4.5 Functions

We saw in section 1 that a function such as
void print_point(struct point* p);

can be imported in Haskell as
foreign import ccall "print_point"

print_point :: Ptr Point → IO ()

This is however not quite what we do.

4.5.1 Userland CAPI. Instead, we generate a C wrapper
which calls the original C function:5

void B_print_point(struct point *arg1) {

print_point(arg1);

}

and then import the wrapper instead:
foreign import ccall "B_print_point"

print_point :: Ptr Point → IO ()

This is precisely what the CAPI calling convention does
in GHC (see section “The CAPI calling convention” of the
GHC manual). We effectively reimplement this as a “userland
CAPI” calling convention; this enables us to extend the set
of functions for which we can generate wrappers (perhaps
some of these can eventually make it into GHC itself).

4.5.2 Structs by Value. Unlike GHC, we can generate wrap-
pers for functions that accept or return structs by value; such
functions cannot be imported directly.
For example, for

struct point byval(struct point p);

we generate the wrapper
void B_byval ( struct point *arg

, struct point *res ) {

*res = byval(*arg);

}

which we import as
foreign import ccall safe "B_byval"

byval_wrapper ::

Ptr Point → Ptr Point → IO ()

Finally, we then define a Haskell-side wrapper function
which recovers the original by-value semantics:6

5The B_ prefix depends on the name of the Haskell module.
6Functions with, alloca and peek are all part of the FFI infrastructure in
the Haskell base library.

byval :: Point → IO Point

byval p =

with p $ \arg →
alloca $ \res → do

B.byval_wrapper arg res

peek res

4.5.3 Safety. One aspect that we have glossed over so far
is that an import of a C function can be declared “safe” or
“unsafe”: safe functions may indirectly invoke other Haskell
functions, whereas unsafe functions may not but are faster
[13]. The default is safe, and this is also the default in
hs-bindgen.

4.6 Execution Mode

The most convenient way to run hs-bindgen is using Tem-
plate Haskell (TH), which essentially makes it possible to
“#include“ a C header directly into a Haskell module, gener-
ating the bindings on the fly.
The alternative is to use hs-bindgen as a preprocessor.

The most important use case for this is cross-compilation.
Any code executed in a TH splice must run on the target
platform; this means that if we run hs-bindgen in a TH
splice, it as well as the entire C toolchain must run on the
target, rather defeating the purpose of cross-compilation in
the first place.

5 Macros

Some C libraries expose part of their public API as macros
rather than functions. For example, a library for memory-
mapped I/Omight provide the offset of a register with respect
to some base address as a macro defining a constant:

#define REG_OFFSET 12

Alternatively, the librarymight provide the same information
as a macro function which adds the offset to a base pointer:

#define REG_PTR(ptr) ptr + 12

In order to produce complete Haskell bindings for such a
library we must also generate Haskell bindings for these
macros, at least for those that are intended to be part of
the library’s public interface (many libraries use macros as
internal implementation techniques). This poses a problem,
however: in C, there is no macro language per se. Macros
are simply expanded by the C preprocessor, so macros are
best thought of as consisting of raw source tokens—which is
indeed how they are represented in the clang AST.
In practice, we have observed that macros used in user-

facing APIs of libraries are largely covered by the two cases
mentioned above: constants and functions. Furthermore,
these macros are meant to be used within C expressions, so
they should be imbued with the semantics of C code (which
is not a priori obvious, since definitionally macros are just
lists of raw tokens).
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Additionally, hs-bindgen also supports macro-defined
types, which we treat similarly to C typedefs. This usage is
however more rare, especially for public facing types7, and
we will not discuss it further in this paper.

5.1 Ingredients for Binding Macros

Consider the task of generating bindings for C expression-
like macros. For simple constants such as:

#define N 8L

#define PI 3.14

hs-bindgen will generate the following bindings:
n :: CLong

n = 8

pi :: CDouble

pi = 3.14

This is straightforward so far: the type signatures can be
immediately deduced from the literals. However, once one
introduces functions, it becomes less obvious how to proceed:

#define F(X) (X)*((X)+1)

Generating a Haskell binding for F requires some form of
operator overloading. The most obvious approach is to use
standard Haskell type classes such as Num, but this is not
general enough. For example, addition in C can be used to
add an integer to a pointer, and get back another pointer; the
REG_PTR function makes use of this. In general, the semantics
of C arithmetic expressions introduces implicit conversions
(§6.3.1 Arithmetic Operands in [8]). For example, consider

float fn(short x, float y){

return (x + 2 * y);

};

Here, the expression x + 2 * y is typed from the leaves to the
root using the C rules of integer promotion and arithmetic
conversion:

• In 2 * y, 2 is an int which gets converted to a float

before multiplication.
• Then, x is promoted to an int, and is then converted
to a float before addition.

This can be naturally expressed in Haskell through class
methods which compute the result type as a function of the
argument types, e.g.

class Add a b where

type AddRes a b

(+) :: a → b → AddRes a b

class Mult a b where

type MultRes a b

(*) :: a → b → MultRes a b

7It is quite common for internal types, especially combined with conditional
compilation. For example, MinGW defines the macro __PTRDIFF_TYPE__
as long long int or long int depending on the platform, and then defines
the public type ptrdiff_t as a typedef in terms of __PTRDIFF_TYPE__.

This allows us to give the following polymorphic type for F:
f :: (Add a CInt , Mult a (AddRes a CInt))

⇒ a → MultRes a (AddRes a CInt)

f x = x*(x+1)

For REG_PTR we end up with
Add a CInt ⇒ a → AddRes a CInt

Importantly, this type can be instantiated to Ptr () →Ptr ().
To achieve this, we need two separate ingredients for

binding macros:
• A library of overloaded functions, containing type
classes and type class instances (such as Add and Mult)
that define the target domain-specific language for C
arithmetic expressions.

• A “mini macro compiler”, which parses C expression-
like macros, performs type inference on them, and
generates code written in the above DSL.

The key observation here is that these two parts need to fit
together: the “mini macro compiler” should be aware of the
type class and type family instances that are defined in the
DSL. This is necessary to keep the type signatures as simple
as possible, e.g. when generating a binding for

#define TWO_PI 2 * PI

it is clearly preferable to generate
two_pi :: CDouble

two_pi = 2 * pi

rather than annotating it with the convoluted type
two_pi :: Mult CInt CDouble

⇒ MultRes CInt CDouble

5.2 c-expr: a DSL for C Expressions

c-expr is a Haskell library which provides a collection of
type classes and type class instances that provide a DSL for
C arithmetic expressions; we showed two examples Add and
Mult in the previous section.

To define instances, c-expr defines value-level functions
that implement C’s arithmetic rules ([8], §6.3.1 Arithmetic
Operands). For example:

binaryAddType

:: Platform

→ CType → CType

→ Maybe (CType , ImplInfo)

Here, binaryAddType computes the return type of addition
in terms of the types of the two arguments, together with
additional implementation information which records the
desired implementation of the type class instance. Note that
this is platform-dependent, because the C rules for arithmetic
conversion are platform-dependent.
We implement binaryAddType as a Haskell function for

two main reasons:
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• As discussed in section 5.1, type inference for macros
(section 5.3) requires the ability to compute type fam-
ily reduction. Exposing a Haskell function that imple-
ments this logic allows it to be imported and used in
the implementation of hs-bindgen.

• It allows us to double-check the correctness of our
implementation of C arithmetic conversion rules by
comparing them against clang. 8

With such Haskell functions in hand, we then use Template
Haskell to generate corresponding Haskell instances for the
target platform9 in the c-expr DSL, such as

instance Add CInt CInt where

type AddRes CInt CInt = CInt

(+) = (Prelude .+)

instance Add CInt CFloat where

type AddRes CInt CFloat = CFloat

x + y = fromIntegral x Prelude .+ y

instance Add (Ptr a) CInt where

type AddRes (Ptr a) CInt = Ptr a

x + y = x `plusPtr ` fromIntegral y

These type classes and instances are exposed by the C.Expr

module of the c-expr library.

5.3 Type Inference

In order to perform type inference for C arithmetic expres-
sions, hs-bindgen internally defines a Hindley–Milner-like
type system with data constructors, multi-parameter type
classes, and type families:

𝜏 = ty-var | 𝜏 → 𝜏 | data-con {𝜏} | ty-fam {𝜏}
𝜃 = class {𝜏} | 𝜏 ∼ 𝜏

𝜎 = ∀ {tyvar}. {𝜃 } ⇒ 𝜏

We can think of this type system as being a sub-type sys-
tem carved out of the Haskell type system, consisting of the
constructs that are used in c-expr’s DSL. This type system
is used to perform type inference for C expressions, follow-
ing the classic Damas–Milner Algorithm W [5] extended to
deal with class constraints using the generate-then-solve ap-
proach of Pottier–Remy ([19], §10 The Essence of ML Type
Inference). Each class comes with a collection of instances,
together with defaulting assignments to handle ambiguous
type variables (as in [9]).

One key challenge is to relate type inference for this inter-
nal type system with the type class and type family instances
of the target language of the bindings. For example, recall
that the AddRes type family should follow the C rules for inte-
ger promotion and arithmetic conversion (§6.3.1 Arithmetic
8These functions could be implemented by simply calling clang, but this
has undesirable consequences due to the way clang aggressively expands
macros and typedefs.
9Note that hs-bindgen’s target platform is the same as c-expr’s host plat-
form: c-expr is a Haskell library, which only cares about the platform on
which it is executed.

Operands in [8]), which are platform-dependent. As per sec-
tion 5.1 , we import the c-expr library in the implementation
of type inference in hs-bindgen. This allows us to e.g. call
the binaryAddType to compute, during type inference, how
the AddRes type family reduces. This is the key to ensure
that we infer types that GHC will accept; in particular, this
ensures that the type family reduction rules implemented
in hs-bindgen’s type inference engine agree with the type
family instances available in the target DSL.

6 Binding Specifications

As Haskell programmers we value compositionality: how
can we ensure that if we break a problem into subproblems,
that we can then combine the solutions to those subproblems
to solve the overall problem? Types are an obvious example:
whenwe solve a task using several functions, their signatures
help us put them back together.

In a similar spirit, we introduce binding specifications: map-
pings from C types to the corresponding Haskell types, along
with properties of those Haskell types; the abstract syntax10
is shown in fig. 3. In section 6.1 we will see how binding
specifications ensure compositionality of bindings generated
by hs-bindgen, and in section 6.2 we will see how we use
the same concept to guide the generation of bindings in the
first place.

6.1 Compositionality

Suppose we have a C library for networking, providing
struct socket;

void open(struct socket *s);

The generated bindings might look something like this11

data Socket

foreign import ccall safe "open"

open :: Ptr Socket → IO ()

Other C libraries that build on this networking library will
have headers that #include the network one. For example, a
library for making HTTP requests might look like

#include "network.h"

void http(struct socket* s, char* req);

Unless told otherwise, hs-bindgen will generate bindings
for all definitions used in this HTTP library, which would
include the Socket type. This works well for standalone
libraries that are implemented in a single Haskell module, but
is not at all composable: the Socket type used in httpwould
be a different type from the one in network, and functions
such as open would not be usable with the Socket type
generated from http.h.
Binding specifications solve this problem. As mentioned,

they map C types to Haskell types; in this particular case,
10The concrete syntax uses YAML or JSON.
11For simplicity we omit the “userland CAPI” we describe in section 4.5.
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BindingSpec ::= CIdent ↦→ HsInfo

CIdent ::= (Name , Set Header)

HsInfo ::= omit | require HsSpec

HsSpec ::= (ModuleName ? , HsName ? , TypeClass ↦→ InstanceInfo)

InstanceInfo ::= omit | require InstanceSpec

InstanceSpec ::= (Strategy ? , Set Constraints)

Figure 3. Binding Specification Abstract Syntax

mapping the C type “socket” to the Haskell type “Socket”.
Alongside the generated bindings, hs-bindgen can also pro-
duce a binding specification for the network library, though
it is also possible to write the specification by hand, which is
useful for bindings that are not produced by hs-bindgen. If
we point hs-bindgen to the network specification when we
generate bindings for the HTTP library, it will reuse the previ-
ously generated Socket type (any number of such “external”
binding specifications can be used).
In addition to recording which Haskell type corresponds

to a particular C type, binding specifications can also record
properties of that Haskell type, such as which type class
instances it has (along with any superclass constraints of
those instances). This too is necessary for compositionality;
for example, if we know that Socket has a Storable instance
but no Show instance, then if we encounter another type
which encapsulates a Socket we will know to equip it with
Storable but not Show instances.
One minor difficulty with binding specifications is that

we need a precise way to refer to specific C identifiers. On
the Haskell side, a module and identifier name suffice12, but
C does not have a “module” concept. We can instead refer
to a header file, but a declaration may actually exist in an
internal header file that is included by the public API, and
the same declaration may be provided by multiple public
headers13. We therefore use a set of headers, and we interpret
a reference to a particular header to also mean any of its
transitive includes, which we can check using the include
graph we build during parsing (section 3).

6.2 Guiding Generation

Various parameters in hs-bindgen influence generation:
predicates select a subset of the C declarations for which we
want bindings, translation configuration allows specifying
desired type class instances, etc.

When we use a binding specification of a set of bindings
in order to generate those bindings in the first place, we
obtain a more fine-grained way to guide binding generation.
For example, we re-interpret the mapping from a C name
to a Haskell name as a declaration of the desired name of

12Since binding specifications are associated with a single Haskell package,
the package can be left implicit.
13For example, uint64_t may be declared via inttypes.h or stdint.h in
the standard library.

the Haskell type; we re-interpret the set of instances as a
declaration of the desired instances to generate (and allow
to specify a strategy to do), etc. Overrides like this must be
respected; for example, if a binding specification states that
a type must be omitted, then it is an error if that type is
used; if a binding specification states that a certain type class
instance must be generated, then it is an error when that
instance cannot be generated (e.g., because it depends on
other instances that are not available).

One interesting detail here is what to do when the user in-
sists that an instance must be generated, say a Show instance
for a struct, but we lack an instance for one of the types of
the fields of the struct. In this case we generate an instance
with a superclass constraint:

instance Show Field ⇒ Show Record where ..

A concrete superclass constraint like this is unusual, but
in this case quite useful; it allows the code produced by
hs-bindgen to depend on an instance written by the user.
When an “input” binding specification does not mention

a particular C type, we choose to interpret such absence of
information as meaning that we should proceed with the de-
fault behaviour. Consequently, following design principle 1,
“Automation”, users only need to provide necessary over-
rides. However, it is occasionally useful to have information
about absence; the syntax of binding specifications therefore
also makes it possible to explicitly state that we should not
produce any Haskell type for a given C type, that a Haskell
type should not have a certain instance, etc.

7 Related Work

Automatic generation of bindings is a challenging problem
that necessitates careful design and advanced techniques,
often drawing parallels with compiler construction. This
research also highlights a notable opportunity within the
academic community. While many tools exist, there is a
relative scarcity of scientific literature exploring the complex
challenges of automatic binding generation as evidenced by
the reliance on links to publicly available software rather
than peer-reviewed articles.

7.1 Rust

The primary inspiration for our work is rust-bindgen [23],
a command line client and Rust library that automatically
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generates Rust bindings to C and some C++ libraries. Like
hs-bindgen, rust-bindgen uses libclang [24] to parse C
headers, translating the structured information provided by
libclang into Rust source code. The generated bindings can
be customised through configuration parameters; we can in-
clude or exclude types, functions or global variables, prevent
generation of certain traits (type classes), or set structure or
union field visibility. Of course, many difficulties in binding
generation arise from the target language, with Rust and
Haskell offering different challenges; for example, Rust has
C-style unions, making their translation more direct.

Macro support of rust-bindgen is rudimentary: bindings
are generated for constants, but not for functions. In contrast,
hs-bindgen defines a small macro expression language, and
uses type inference to assign a most general type to macro
functions. For macros that we cannot parse or typecheck we
do not generate any bindings.

Further, the bindings generated by rust-bindgen are not
(easily) composable. When library C depends on library P,
we can generate bindings for P or the union of both libraries,
but we can not generate bindings for library P, and then use
those bindings when generating bindings for C. By contrast,
hs-bindgen will generate a binding specification for P along
with its bindings, which can then be used when generating
the bindings for C. We consider bindings specifications an
important contribution of our work.

7.2 Haskell

The commonly used tools for creating Haskell bindings to C
code are hsc2hs [21] and c2hs [3, 22], which we will discuss
separately. We will discuss some other tools in section 7.2.3.

7.2.1 hsc2hs. The development of hsc2hs has been tightly
coupled to GHC: it is distributed with GHC, and documented
in the GHC User’s Guide. When writing C bindings by hand,
hsc2hs can be used to integrate small C snippets into Haskell
code; we saw a small example in section 2.2.1. This can be
used to query the C compiler about the offset of fields, the
size of a type, etc. It is not a full C parser; the C snippets
are evaluated by generating, compiling, and executing a C
program, whose output forms the resulting Haskell code.
While hsc2hs is certainly useful, it does not provide any
automation: the bulk of the work is done by the programmer.

7.2.2 c2hs. While c2hs is a closer in spirit to hs-bindgen
than hsc2hs, its focus is different. Indeed, its design goals
[3, §2.1] explicitly exclude generation of Haskell function
signatures from C prototypes and marshalling of compound
C structures, the pair of which could reasonably be described
as hs-bindgen’s raison d’être. It is worth taking a moment
to take a closer look at this difference in perspective.
Chakravarty acknowledges that marshalling compound

values is useful, but notes: “often we do not really want to
marshal entire C structures to Haskell, but merely maintain
a pointer to the C structure in Haskell”. This is reasonable,

but highly application dependent. In cases where this is true,
hs-bindgen may indeed not be optimal. Like hsc2hs, c2hs
does provide support for querying the C compiler technical
details such as the offsets of fields; like hs-bindgen, it uses
a C toolchain to parse and analyse the C header to do so.
In regards to functions, Chakravarty writes: “Although

[function signature generation] seems very convenient for
a couple of examples, we generally cannot derive a Haskell
signature from a C prototype (a C int may be an Int or
Bool in Haskell)”. We do not disagree necessarily, but feel
that there is value in exposing the function signature without
making the choice between Int or Bool, and choosing the
low-level CInt instead: the higher-level wrapper can then
be defined in terms of the low-level function, using the full
power of Haskell to do so.
Much of c2hs’ focus (especially in the tool as it exists

today [22]) is on providing a domain-specific language for
making it more convenient to call C functions, automatically
marshalling inputs and outputs, mapping single arguments
on the Haskell side to multiple arguments on the C side, etc.
This is not something we offer at all in hs-bindgen, though
our hope is we will be able to build this on top of the low-
level API we describe in this paper. We will come back to
this when discussing future work (section 8.1).

7.2.3 Other Tools. C header files do not contain much
meta-information; to cite one simple example, an argument
of type char* might be intended as pointer to one character,
as a pointer to a string, or indeed as an output parameter
that the function will write to. A plethora of domain specific
“interface description languages” have been developed to
remedy this problem and describe C APIs at a higher-level of
abstraction. Some of these have corresponding Haskell tools;
this includes fficxx [10], apiGen [25], haskell-gi [26],
amazonka [2], godot-haskell [20], glgen [11], vulkan [7]
and vulkan-api [4]. It is an interesting question if we could
extend hs-bindgen with hooks to enable it to combine its
internal logic with this kind of externally provided meta
information.

There is also some research into interfacing Haskell with
other languages, such as the use of multi-parameter type
classes for interfacing with object-oriented languages [16].
A survey of this research is beyond the scope of this paper.

8 Conclusions

Interfacing Haskell with C libraries is a common necessity,
but the manual creation of bindings is both error-prone and
laborious. This paper introduced hs-bindgen, a novel tool
designed to automate the generation of Haskell FFI bindings
directly from C header files.

Our primary contribution is a fully automated approach to
binding generation. We have shown how we can address the
more difficult aspects of C-Haskell interoperability, such as
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name assignment for anonymous types, representing unions,
and calling functions that take or return structs by value.

A key innovation is the concept of binding specifications,
which provides a compositional method for using bindings
for one library in bindings for another. Furthermore, we
defined a domain-specific language in Haskell to represent
C arithmetic expressions found in C macros, along with a
corresponding type inference algorithm. This allows for the
type-safe handling of (a subset of) C macros.

8.1 Future Work

The bindings generated by hs-bindgen are low-level. For
example, consider

void g(char *);

The code that we generate has signature

g :: Ptr CChar → IO ()

Depending on the intended use of g, however, any of the
following signatures (or indeed others) might be preferable:

g :: String → IO ()

g :: Text → IO ()

g :: Char → IO ()

g :: IO Char

This kind of high-level bindings is not limited to functions; for
example, we might think about recognising tagged unions
(so that we can translate them to a proper Haskell sum type
rather than the opaque type described in section 4.3).

We plan to tackle high-level bindings in two ways:
• Through a set of Haskell combinators that make it
more convenient to (manually) write such high-level
bindings in terms of the low-level bindings. This is
similar in spirit to what c2hs does (section 7.2.2), but
in Haskell itself, rather than in a DSL, so that we can
take advantage of the full power of abstraction that
Haskell offers.

• Through heuristics that can generate the high-level
bindings automatically. Unlike the low-level bindings,
this will require user input. It would be useful to add
support for existing interface description languages to
guide this process (see also section 7.2.3).

We structured hs-bindgen like a compiler, giving us a
solid foundation for further development. For example, while
we currently allow users to provide predicates selecting
which declarations in a C header to generate bindings for,
these predicates are currently quite simplistic. However, we
could for example make use of the use-decl graph (section 3.1)
to allow users to select a function “and any of the types it
depends on”, akin to program slicing [27]. Similarly, while
experience will need to make clear over time if the macro
expression language we chose (section 5) is sufficient, the
foundation we have provided here will make extensions to
this language relatively easy.
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