
Overloaded Record Fields for Haskell
Skills Matter — In The Brain

Adam Gundry

April 28, 2014 — Copyright c© 2014 Well-Typed LLP

.

.Well-Typed

.The Haskell Consultants



Once upon a time...

data Shape = Circle {centre :: Point, radius :: Int}
| Rect {centre :: Point, width :: Int, height :: Int}

centre :: Shape→ Point
centre (Circle c ) = c
centre (Rect c ) = c

radius :: Shape→ Int
radius (Circle r ) = r
radius (Rect ) = error "?"

.

.Well-Typed



The way we live now

data Authorization
= Authorization {

aut id :: AuthorizationID,
aut organization id :: OrganizationID,
aut user id :: UserID,
aut username :: Username,
aut password :: Password,
aut is temporary :: AuthIsTmp,
aut key :: AuthorizationKey,
aut admin :: Maybe AdministratorType,
aut created at :: CreatedAt,
aut updated at :: UpdatedAt}

data Avatar
= Avatar {

avr type :: AvatarType,
avr media key :: Maybe AvatarMasterKey,
avr master key :: Maybe AvatarMasterKey,
avr current version :: AvatarVersion,
avr history :: AvatarMasterKey,
avr master s3uri :: Maybe S3URI,
avr viewable s3uri :: Maybe S3URI,
avr filename :: Maybe UploadFilename,
avr magic string :: AvatarMagicString}

data Booking
= Booking {

bkg id :: BookingID,
bkg user id :: UserID,
bkg organization id :: OrganizationID,
bkg policy id :: Maybe PolicyID,
bkg tag :: Maybe Tag,
bkg suspension id :: Maybe EventID,
bkg trashing id :: Maybe EventID,
bkg discarding id :: Maybe EventID,
bkg device id :: DeviceID,
bkg start grace :: Minutes,
bkg starts at :: UTCTime,
bkg duration :: Minutes,
bkg end grace :: Minutes,
bkg reflection user id :: Maybe UserID,
bkg observer id :: Maybe UserID,
bkg reflection name :: ReflectionName,
bkg reflection room :: Room,
bkg reflection description :: ReflectionDescription,
bkg reflection id :: Maybe ReflectionID,
bkg booking invitations :: BookingInvitation,
bkg active :: Acceptance,
bkg created at :: CreatedAt,
bkg updated at :: UpdatedAt}

data Channel
= Channel {

chn type :: ChannelType,
chn media key :: Maybe VideoMasterKey,
chn filename :: Maybe UploadFilename,
chn streamable videos :: StreamableVideo,
chn prep state :: VideoPrepState,
chn progress :: Maybe Percent,
chn eta :: Maybe Miliseconds,
chn diagnostic :: Maybe Data.Text.Internal.Text}

data Comment
= Comment {

cmt id :: CommentID,
cmt parent id :: Maybe CommentID,
cmt user id :: UserID,
cmt organization id :: OrganizationID,
cmt policy id :: Maybe PolicyID,
cmt tag :: Maybe Tag,
cmt suspension id :: Maybe EventID,
cmt trashing id :: Maybe EventID,
cmt discarding id :: Maybe EventID,
cmt mark inappropriate id :: Maybe EventID,
cmt body :: CommentBody,
cmt channel :: Maybe Channel,
cmt start :: Maybe Miliseconds,
cmt duration :: Maybe Miliseconds,
cmt created at :: CreatedAt,
cmt updated at :: UpdatedAt}

data DatabaseSnapshot
= DatabaseSnapshot {

dbs started at :: Maybe StartedAt,
dbs authorizations :: Maybe Authorization,
dbs bookings :: Maybe Booking,
dbs comments :: Maybe Comment,
dbs configurations :: Maybe Configuration,
dbs devices :: Maybe Device,
dbs device reports :: Maybe DeviceReport,
dbs events :: Maybe Event,
dbs groups :: Maybe Group,
dbs invitations :: Maybe Invitation,
dbs reflections :: Maybe Reflection,
dbs settings :: Maybe Setting,
dbs shares :: Maybe Share,
dbs users :: Maybe User,
dbs videos :: Maybe Video,
dbs started at :: Maybe StartedAt,
dbs authorizations :: Maybe Authorization,
dbs bookings :: Maybe Booking,
dbs comments :: Maybe Comment,
dbs configurations :: Maybe Configuration,
dbs devices :: Maybe Device,
dbs device reports :: Maybe DeviceReport,
dbs events :: Maybe Event,
dbs groups :: Maybe Group,
dbs invitations :: Maybe Invitation,
dbs reflections :: Maybe Reflection,
dbs settings :: Maybe Setting,
dbs shares :: Maybe Share,
dbs users :: Maybe User,
dbs videos :: Maybe Video
dbs device reports :: Maybe DeviceReport,
dbs events :: Maybe Event,
dbs groups :: Maybe Group}

Copyright c© 2014 Iris Connect

.

.Well-Typed



The problem

data Person = Person {name :: String, age :: Int}
data Cat = Cat {name :: String}

GHC says:

test.lhs:2:28:
Multiple declarations of ‘name’
Declared at: test.lhs:1:28

test.lhs:2:28

.

.Well-Typed



Disambiguation by prefix/suffix

data Person = Person {personName :: String, personAge :: Int}
data Cat = Cat {catName :: String}

This works, but:

I it’s verbose
I how do you keep track of the affixes?
I why must we tell the typechecker things it already knows?

.

.Well-Typed



Where we’re going

Design goals for OverloadedRecordFields

Demo

How it works, more or less

Record update and lenses

Looking forward

.

.Well-Typed



Design goals for OverloadedRecordFields

I Use the same field in multiple records
I As simple as possible

I No new syntax!
I No anonymous/extensible records

I Interoperate with existing code
I Data types declared in modules without the extension
I Libraries need not force the extension on their users

.

.Well-Typed



Implementation

I Took 3 months over Summer 2013
I GHC’s codebase is scary
I I couldn’t have done it without help
I There will be bugs

.

.Well-Typed



Demo

GHCi, version 7.9.20140418: http://www.haskell.org/ghc/ :? for help
Loading package ghc-prim ... linking ... done.
Loading package integer-gmp ... linking ... done.
Loading package base ... linking ... done.
Prelude> :set -XOverloadedRecordFields
Prelude> data Person = Person { name :: String }
Prelude> data Cat = Cat { name :: String }
Prelude> name (Person "Adam")
"Adam"
Prelude> name (Cat "Jeoffry")
"Jeoffry"
Prelude> :t name
name :: GHC.Records.Accessor t t1 "name" t2 => t t1 t2

.

.Well-Typed



Demo

GHCi, version 7.9.20140418: http://www.haskell.org/ghc/ :? for help
Loading package ghc-prim ... linking ... done.
Loading package integer-gmp ... linking ... done.
Loading package base ... linking ... done.
Prelude> :set -XOverloadedRecordFields
Prelude> data Person = Person { name :: String }
Prelude> data Cat = Cat { name :: String }
Prelude> name (Person "Adam")
"Adam"
Prelude> name (Cat "Jeoffry")
"Jeoffry"
Prelude> :t name
name :: GHC.Records.Accessor t t1 "name" t2 => t t1 t2

.

.Well-Typed



How it works, more or less

data Person = Person {name :: String, age :: Int}

name :: r {name :: t } ⇒ r → t
name ≈ getField (proxy# :: Proxy# "name")

I r {name :: t } is like a typeclass constraint
I “the type r has a field name of type t”
I Solved automatically when a suitable record field is in scope
I Actually uses a built-in magic typeclass Has r "name" t

.

.Well-Typed



The record update problem

Haskell’s traditional record update syntax is clumsy but powerful

I Type-changing update
I Update multiple fields at once:

data Pair a = Pair {x :: a, y :: a}

foo :: Pair Char→ Pair Bool
foo r = r {x = True, y = isDigit (y r)}

bar r = r {x = True} {y = isDigit (y r)}

.

.Well-Typed



Record update for overloaded fields

I Don’t try to be clever!
I Require a type signature to resolve ambiguity
I At least this is simple and backwards-compatible

foo :: Pair Char→ Pair Bool
foo r = r {x = True, y = isDigit (y r)}

foo r = (r :: Pair Char) {x = True, y = isDigit (y r)}

foo r = r {x = True, y = isDigit (y r)} :: Pair Bool

.

.Well-Typed



Record update the ugly way

type family UpdTy r (n :: Symbol) t :: ∗
setField :: Proxy# n→ r → t → UpdTy r n t

Instead of

baz r = r {age = 30}

we can write

baz r = setField (proxy# :: Proxy# "age") r (30 :: Int)

Yuk!

.

.Well-Typed



Lenses to the rescue

A lens combines a getter and setter for a field:

data Lens r a
get :: Lens r a → r → a
set :: Lens r a → a→ r → r

I A record field corresponds not just to a getter, but to a lens!
I Lens libraries provide combinators for working with lenses
I But which lens library should we pick?

.

.Well-Typed



Abstraction over lens libraries

name :: Accessor p r "name" t ⇒ p r t
name = field (proxy# :: Proxy# "name")

I Pick p = (→) to get back selector functions

name (Person "Adam" 26) :: String

I Or p = Lens

set age 27 (Person "Adam" 26)

I Lens libraries can give their own instances of Accessor

.

.Well-Typed



Warts and all

I Record projections must be brought into scope somehow
I Type inference error messages
I Cannot overload higher-rank fields
I Multiple field update
I van Laarhoven lenses require a wrapper type

.

.Well-Typed



The future?

I OverloadedRecordFields in HEAD Real Soon NowTM

I Gather feedback from users, tweak design, fix some bugs
I Projected to be released in GHC 7.10
I Syntax for projections: perhaps rec# x instead of x rec?
I OverloadedDataConstructors?
I More coherent story about special-purpose constraint solving

.

.Well-Typed



Thanks and acknowledgments

I Google Summer of Code
I Simon Peyton Jones
I Edward Kmett
I Many more...

.

.Well-Typed



Here be dragons

.

.Well-Typed



The Has typeclass

type family FldTy (r :: ∗) (n :: Symbol) :: ∗
class t ∼ FldTy r n⇒ Has r (n :: Symbol) t where

getField :: Proxy# n→ r → t

type instance FldTy Person "name" = String
instance t ∼ String⇒ Has Person "name" t where

getField = name

.

.Well-Typed



The Upd typeclass

type family UpdTy (r :: ∗) (n :: Symbol) (t :: ∗) :: ∗
class (Has r n (FldTy r n), t ∼ UpdTy r n (FldTy r n))
⇒ Upd r (n :: Symbol) t where

setField :: Proxy# n→ r → t → UpdTy r n t

type instance UpdTy Person "name" t = Person
instance t ∼ String⇒ UpdTy Person "name" t where

setField (Person a) n = Person n a

.

.Well-Typed



Accessor

class Accessor (p :: ∗ → ∗ → ∗) r (n :: Symbol) t where
accessField :: Proxy# n

→ (Has r n t ⇒ r → t)
→ (forall t ′.Upd r n t ′ ⇒ r → t ′ → UpdTy r n t ′)
→ p r t

instance Has r n t ⇒ Accessor (→) r n t where
accessField getter = getter

field :: Accessor p r n t ⇒ Proxy# n→ p r t
field z = accessField z (getField z) (setField z)

.

.Well-Typed


	Design goals for OverloadedRecordFields
	Demo
	How it works, more or less
	Record update and lenses
	Looking forward

